苹果大模型系列之Apple MLX 与 Llama.cpp 对比 Hugging Face Candle Rust,实现本地闪电般快速的LLM

简介

Mistral-7B 和 Phi-2 实验跨库的最快推理/生成速度。
在这里插入图片描述

介绍

在 NLP 部署方面,推理速度是一个至关重要的因素,特别是对于支持 LLM 的应用程序而言。随着 Apple M1 芯片等移动架构数量的不断增长,评估 LLM 在这些平台上的性能至关重要。在本文中,我比较了三个流行的 LLM 库(MLX、Llama.cpp和Hugging Face 的Candle Rust)在Apple M1 芯片上的推理/生成速度。旨在方便开发人员选择最合适的库在本地机器上部署 LLM,同时考虑性能、实现的便利性以及与可用工具和框架的兼容性。对于推理速度测试,我使用了两种先进的 LLM 模型;来自 Microsoft 的 Mistral-7B 和 Phi-2。根据结果,为想要提高其 LLM 性能的开发人员提供了一些建议,特别是在 Apple M1 芯片上。

推荐文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知识大胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值