99%的互撕场景,都可以用这个方法解决

一、我们每天都会遇到的问题

相信稍微在职场上工作几年的同学,都会遇到责任扯皮问题。这个事该你做,不该我做,这个问题是你的责任不是我的责任。尤其是,有时候冲突双方都觉得自己有理。但是正如柯南的那句名言:真相只有一个!同样的,从科学角度上来说,判定责任依据也只有一个,那就是汉德公式。

二、解决问题的利器——汉德公式:谁避免意外的成本最低,谁的责任就最大

汉德(Learned Hand)是美国一位著名的中级法院的法官。这位汉德法官很有思想,他写下的判决书是美国中级法院法官中被引用最多的。其创造性的提出了“汉德公式”,这对我们解决很多现实问题(包括业务问题)提供了很多启发。

我们把某人a避免意外的成本记作B,把产生意外的概率记作P,把意外所产生的损失记作L,那么某人a应承担责任的条件就是 B < P * L。这就是著名的汉德公式。

这个公式有些抽象,大家其实也不用刻意去记。它的核心思想其实引用诺贝尔经济学奖得主科斯的观点就可以直观说明——谁避免意外的成本最低,谁的责任就最大。

三、一个真实且经典的美国案件

这是一个发生在1914年美国的真实案例。

从前的火车都是烧煤的,烧煤就会喷出火星。有一辆火车路过一片亚麻地,农夫把700吨亚麻堆在了铁路边自己的农地上。这亚麻是农夫的,铁路边的农地也是农夫的。亚麻放在农地上,没有碍任何人的事儿,但是火车经过时喷出的火星把700吨亚麻给烧了,铁路公司要不要赔偿?

当时著名的法官奥利弗 ·温德尔 · 霍尔姆斯给出的判词意见是:“虽然很多人都认为铁路公司应该赔偿农夫,但是我们设想一下,如果铁路公司跟农夫的总收人与总产出不能够达到最大的话,农夫可能是要负一定责任的。”在现实生活中,如果铁路公司和农地同属一人,他当然会说:“我只要把堆放亚麻的地点挪远一点,意外就能避免了。”

四、“如果鞭炮和锅炉都是你家的,你肯定会把他们分开的远远的”

再举个例子,我们不会买了鞭炮回家后,因为鞭炮是我的,这个家我做主,就非要把镇炮放到炉子边。相反,既然鞭炮是我的,炉子也是我的,那我就得考虑如何把避免意外的成本降到最低,那当然就是把鞭炮放得旁炉子稍微远一点。

这个想法非常重要。正是基于这个想法,科斯的意思是说,火星烧着了亚麻,但是责任可能在农夫,虽然农大并未招惹铁路公司。谁付出的成本更低,谁就应该承担更大的责任。那既然农夫避免意外所要付出的成本,比铁路公司避免意外所要付出的成本低得多,那挪开亚麻的贵任,就要落到农夫身上了。

五、现实应用举例

有时候,我们业务的上下游环节(比如,招聘、培训、管理、销售等环节)会存在KPI或业务动作冲突。那么如何判责呢?汉德公式给了我们很好的启发。

比如,我们好不容易招聘一个运营人员来参加培训,每招聘一个运用人员都要耗费很大的精力。但是每次培训总是有部分运营人员在培训中途就退出,而培训人员因为没有考核,所以也就没有挽留动作。这里,引用汉德公式的基本思路,我们问自己一个问题:招聘一个运营人员付出的成本与让ta成功参加完一个运营人员所付出的成本,哪个更高?

这里我们假设招聘一个人员的成本定义为1000,培训过程中ta中途退出的概率是1/10,那么只要培训人员对每一个运营人员所付出有效挽留的成本小于100,那就是值得做出一些挽留动作的,反之,则属于过度浪费资源,没有必要做出挽留动作。

同样的,如果因上下游协同不力,需要判定哪个环节需要做出改善,只需要看避免相同损失或取得相同收益的前提下,在事件发生概率相同的情况下,哪个环节更容易做出改善就可以了。我们在日常业务管理及业务决策都可以借鉴这一思路。

总之,处理这类问题,我们要相信经济学家们、相信在历史上留下过名字的人的智慧,谁避免意外的成本最低,谁的责任就最大。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值