如果可以重来,你会如何“工作”——《重来3》推荐序 2025

四年前,我给《重来3》写过推荐序,可能是书里内容切中了最近几年的形势,比如“副业、灵活就业、大厂离职、反内卷”等等话题,这本书的市场反响不错。近期,《重来3》要再版,出版社邀请我再来写一篇推荐序。

于是,根据这几年的情况刷新一下。

观点还是那句话:工作狂也好,书里说的状态也好,希望大家了解不同的选择,想清楚,并努力让自己有选择的权利


“问问人们在必须完成工作的时候会去哪儿,你极少能听到这个答案:办公室。”

7b196235c3166a16d65d37dd9c6f41d6.png

不知《重来3》里的这句话戳到你没有?

和《重来》系列的前两本一样,第三本依然是两位作者(及其公司——Basecamp,原名37signals,是高效的软件公司之一,它推出并持续维护着受用户欢迎的项目管理工具Basecamp)真实工作状态的总结与分享。

本书的主题是反对工作狂,倡导公司管理者建立更为冷静、高效的企业文化,减少浪费,减少带来干扰和持续压力的事。

“快忙疯了”已经成了很多朋友的日常,大家都在抱怨加班,享受其中的人少之又少。诚然,我也认识一些“主动的工作狂”,我能感受到他们对工作的热爱,工作成果的正反馈也让他们是真的开心(下图右上)。对他们来说工作就是生活的全部,工作本身就是人生的目的。随之而来的代价,也许是减少了给自己和亲朋好友相聚的时间、也许是牺牲了个人的健康与兴趣爱好。换句话说,我认为工作狂是伟大的,他们为了远方的客户,牺牲了自己和亲近之人,我自问做不到,只能佩服

0c6f6bbbcccb5585184958e59e6634e0.png

但问题是,大多数工作狂,并不是心甘情愿的,不管是老板还是员工,并不想成为“被动的工作狂”。哦对了,补充一句,“无效的卷”并不在本文讨论之列(上图左下和右下),我想聊的是,哪怕你是“有效的卷”,只要你“卷”得不开心,也可以试试选择“不卷”(上图左上)。

在本书刚引进国内的2020年,当时的我在想,这样的公司是否能在国内生存?国内什么时候能有一大批如书中“榜样”那样工作的朋友?

一转眼疫情过去,但大家期待的强劲复苏似乎并没有到来,这两年不少行业和企业碰到了重重困难。大厂叙事的消退、“离职博主”从兴起到过饱和、副业与灵活就业成为常态、从烈火烹油到觉得小而美也不错……身边似乎有越来越多的人,或主动或被动地变成了《重来3》中描述的工作状态。

原来,工作狂式的卷,还有个外在因素助力,即认为“付出必有回报”,当大家发现卷也没啥用的时候(上图左上转左下),更多的人就会停下来重新思考——

工作的目的是什么?

很多人都会看重财务回报,当然,这必不可少。如果再深想一层,有了财务回报以后,你会拿这些钱来做什么?认真一点,答案肯定不是“吃喝玩乐”。所以,钱其实是手段而不是目的,那么单纯为了获取钱的工作就更不是人生目的了。

除了工作以外,你还有更多的手段去获得财务回报。比如,用认真和孩子玩耍代替花钱给孩子报兴趣班,发展一个兴趣爱好并保留获取副业收入的可能,研究至少30年期限的投资以赚取额外的“睡后收入”……

那是社会地位么?这也是手段而不是目的。

所以,是时候重新审视一下工作本身的意义,并做出合理规划了。遗憾的是,这是每个人自己的课题,别人没法给你答案,你必须主动选择并为之负责。唯一可以确定的是,工作只是你人生中特定时间段里,占比也不算大的一小部分。

那要怎么做才能让工作上“忙疯了”的状态有些改观?

书里给了一些思路,选几个有趣的说说。

——没有目标,不想改变世界——

“为公司制定目标的信念——永远要努力争取做得更大更好——是如此根深蒂固,以至于需要讨论的事情好似只剩下了一件:这个目标的野心够不够大。一个目标也不设,你照样可以运营一个伟大的公司,绝对可以。做实事用不着仰赖虚假的数字。如果你非得有个目标不可,那来个简单的怎么样?让公司生存下去,好好服务顾客,或者成为一个能让员工开开心心来上班的地方。这些目标不太容易量化,但并不等于它们不重要。”

书里反对的是舍本逐末地把完成目标、改变世界当成终极要义,而更应该把精力聚焦在踏实干活,为客户创造价值。我看过太多公司简化管理,设置雄心勃勃的数字目标,然后为了实现它无所不用其极。

而书里推荐的做法是:没有目标。大家在一起共事是基于信任、共识,真心想做一点有意义的事情,仅此而已。有点阿Q式的自我解压?好像是,但又有什么不好呢。你我出生在这个世界上,就已经改变世界了,能再创造一点价值,就很好了,和更厉害的人相比,或多或少而已。

——反对共享日程表——

“如果你对自己的大多数时间都掌控不了,那你就不可能冷静下来。你会经常感到压力,觉得自己安心做事的能力被人夺走了。人们很容易为共享日程表找到辩白的借口:“我只不过是在发出邀请嘛!”可没人好意思拒绝别人的邀请,没人希望被别人看成“很难打交道”或“请不动”。可以被人随意添加的日程表就好像俄罗斯方块游戏,不好意思拒绝,就只能任由方块一个接一个地掉落下来,直到自己的一天被堆砌得满满当当——游戏结束。”

最近你看过自己的日程表吗?你自己填上的内容有多少,被其他人填上的又有多少?我把前者叫做“主动时间”,后者叫做“被动时间”。

共享日程,看起来很高效,大大提升了“约个会”的效率,可是,作者认为大多数会议本身就是降低效率的,它只是让小部分人“感觉很好”,而浪费了其他大部分人的时间。

取而代之的做法,是设置答疑时段,给每个人都留下足够多的、整块的、不被打搅的主动时间,把各种需要互动、响应的“被动时间”留在一个特定的时段,真正紧急到需要立刻马上做的事情,其实没那么多。

——反对公司的“家文化”——

“听见某些高管说他们的公司就像一个‘欢乐的大家庭’的时候,请你当心。一般来说,他们的意思并不是无论你遇上什么事,公司都会保护你,也不是公司会无条件地爱你——你懂的,就像健康的家庭会做的那样。他们的意思更有可能是这个:他们要的是单向的牺牲——你的牺牲。”

据我的观察,“家文化”是不少企业特别喜欢的。东西方的文化差异也许是一个重要因素,“东方情理法,西方法理情”的说法或许可以解释。和同事有一些共同的兴趣爱好,成为工作之外的好朋友,合作起来会更加顺畅,但,如果完全失去了工作之外的其他朋友,未免得不偿失。

对于公司的“家文化”,我想也有细分。相较于民主平等的“家文化”,封建家长式的文化氛围显然更让员工不舒服。一提到后者,似乎很多事情都不可讨论,工作到深夜,或是放弃假期,在这就变成了奉献,甚至连拒绝都变成了不道德。

书里的观点是,同事、家人、朋友,都很重要,保持多样性,要好过混为一谈。

——不给客户做承诺——

“从Basecamp初创时起,我们就很不愿意作出产品改进的承诺。我们向来希望客户能根据现在能买到用到的版本来判断产品的好坏,而不是某个‘有可能会’在日后推出的、想象出来的版本。这就是为什么我们从来不发布未来的产品路线图。不是因为我们在某个小黑屋里私藏着一张,不愿意拿出来给大家看,而是因为它确实不存在。我们真的不知道一年后我们会做什么,所以为什么要装出那副样子呢? ”

看似不负责任的“不承诺”,只是不去承担自己承担不起的责任,这其实是一种更负责的做法。毕竟,我们处在一个“变化多端”时代,这两年AI技术的发展又进一步加剧了未知,很难预知未来,也就很难计划未来,强行设定目标并执着地追求,很可能适得其反,边走边调整是一种好办法。

不做承诺,可以掌握主动权,随机应变地做出更适合当下的选择,而不是被动响应,救火队式的打补丁。

看到这里,你可能会说,这本书里说的情况太理想了,在我们这里不可能。我承认,肯定没法照搬,但这并不妨碍我们去思考,可以借鉴的有哪些?前提条件是什么?适用场景是什么?可以应用到什么程度?

以下,是我认为的一些助力条件。

第一,生产力进一步发展。整个社会的供给越来越丰饶,那么,满足基础的、甚至有尊严的生活需要付出的努力就会越来越少,人们的安全感也就会相应提升,于是,大家就不再会“为五斗米折腰”。很幸运,我们的社会正朝着这个方向继续发展,AI、能源、材料等等技术的进步,都让未来充满了想象力。

第二,价值评判更加多元。这需要整个社会的宽容,老板不只是追求把企业做大做强、员工不只是追求职位越做越高,人们也不再只是以“世俗成功”来评判一个人。如此,就会有更多人选择小而美、选择在“向上”攀登的过程中留在某处,然后去前后左右看看,体验更丰富的人生。反正,“向上”永远没有尽头。

第三,组织成员都是专才。较少的工作时间还能有好结果,需要每个人都是专家。这意味着上下级关系的平等,只是分工不同,而不是“官大一级压死人”的关系。这对每个人提出了更高的要求,卷的反面不是躺平,而是更主动地找到自己的优势,发现自己事半功倍的任务,而不是变成可替代的一个劳动力。

第四,合作关系更加灵活。组织内是专家小团队、灵活的工作环境,组织间是自由人的自由组合。这样可以摆脱传统的甲乙方关系,合作中的各方各有所长,互相赋能。我那些灵活就业做得风生水起的朋友们,都没有很大的团队,通常是以工作室的方式,和各种外部组织按需协作完成任务。

第五,任务更具创新性质。比如设计师、律师、音乐人、内容创作者等等,这类工作的产出,不是靠堆时间就能做好的。而背后的专业人才,也并非要拼执行,而是需要创新能力。好消息是,在AI的帮助下,我们更能从繁重的基础工作中解脱出来,把更多的精力放在创新上。

第六,肯定还有,期待你的观点,我们多多交流。

回想了一下我自己的经历,如写书、咨询的工作模式,就和书中所提倡的理想工作状态比较像。在几周到几个月的项目周期内,我和合作伙伴们组成虚拟的项目组,大家共同去完成一个有价值、且很有趣的任务,比如给某家企业做一个轻咨询项目、带创业者去海外游学、给中学生开一个关于产品创新的夏令营。每一天,没人知道其他人正在做什么。他们在工作吗?不知道。在休息吗?不知道。他们在吃午饭吗?不知道。在接孩子放学吗?不知道。而且没人在乎这些,只要按照约定,完成产出就可以了。

如果你向往书中描述的工作状态,且你是一个打工者,那么在设计自己职业线路的时候,可以留意上面我说的几个条件。如果你是一个老板,可以开始思考,在当下的中国,如何让社会越来越接受多样性,让小而美、没那么多野心成为一种选择。有趣的是,如果走上这条路,你就已经从打工人变成了自己的“老板

如果可以重来,我希望你能主动选择自己的工作状态。我看到这几年,身边已经出现很多,并且一定会出现更多,如书中“榜样”的朋友,真好。

蓝狮子最终把再版的书名从《重来3:跳出疯狂的忙碌》改为《重来3:做得更少,但赚得更多》,副标题的变化主要是因为大环境的变化,想在书名中更戳读者的痛点。这个副标题,注定只属于少数人,不过“赚”到的可不只是“钱”,我也把它视为祝福,送给看到这本书、这句话的你。

_________

苏杰(iamsujie),产品创新顾问,《人人都是产品经理》丛书作者,良仓孵化器创始合伙人,阿里8年产品经理,集团产品大学负责人。如需产品经理/产品思维/产品创新相关领域的培训咨询服务,欢迎联系这个微信(13758212411)。

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
AI实战-营销数据集分析预测实例(含20个源代码+797.47 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共176.38 KB;数据大小:2个文件共797.47 KB。 使用到的模块: pandas matplotlib.pyplot warnings numpy seaborn sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.confusion_matrix sklearn.metrics.classification_report os sklearn.preprocessing.StandardScaler sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA scipy.stats.f_oneway scipy.stats.chi2_contingency sklearn.pipeline.Pipeline sklearn.model_selection.GridSearchCV sklearn.compose.ColumnTransformer sklearn.linear_model.LogisticRegression xgboost.XGBClassifier sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.feature_selection.SelectFpr sklearn.feature_selection.f_classif sklearn.feature_selection.chi2 sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.roc_auc_score sklearn.metrics.roc_curve collections.defaultdict sklearn.metrics datetime.datetime itertools lightgbm catboost.CatBoostClassifier xgboost sklearn.impute.SimpleImputer sklearn.model_selection.StratifiedKFold sklearn.metrics.ConfusionMatrixDisplay sklearn.metrics.make_scorer optuna sklearn.preprocessing.MinMaxScaler scipy.stats.pearsonr statsmodels.api statsmodels.formula.api.ols sklearn.metrics.auc imblearn.over_sampling.SMOTE sklearn.svm.SVC sklearn.model_selection.cross_val_score sklearn.metrics.precision_recall_curve
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值