相关性检验--Spearman秩相关系数和皮尔森相关系数

相关性检验--Spearman秩相关系数和皮尔森相关系数

原文:http://www.cnblogs.com/zhangchaoyang/articles/2631907.html

本文给出两种相关系数,系数越大说明越相关。你可能会参考另一篇博客独立性检验

皮尔森相关系数

皮尔森相关系数(Pearsoncorrelation coefficient)也叫皮尔森积差相关系数(Pearson product-moment correlation coefficient),是用来反应两个变量相似程度的统计量。或者说可以用来计算两个向量的相似度(在基于向量空间模型的文本分类、用户喜好推荐系统中都有应用)。

皮尔森相关系数计算公式如下:


分子是协方差,分子是两个变量标准差的乘积。显然要求X和Y的标准差都不能为0。

当两个变量的线性关系增强时,相关系数趋于1或-1。正相关时趋于1,负相关时趋于-1。当两个变量独立时相关系统为0,但反之不成立。比如对于y=x^2,X服从[-1,1]上的均匀分布,此时E(XY)为0,E(X)也为0,所以ρX,Y=0,但x和y明显不独立。所以“不相关”和“独立”是两回事。当Y 和X服从联合正态分布时,其相互独立和不相关是等价的。

对于居中的数据来说(何谓居中?也就是每个数据减去样本均值,居中后它们的平均值就为0),E(X)=E(Y)=0,此时有:


Spearman秩相关系数

首先说明秩相关系数还有其他类型,比如kendal秩相关系数。

使用Pearson线性相关系数有2个局限:

  1. 必须假设数据是成对地从正态分布中取得的。
  2. 数据至少在逻辑范围内是等距的。

对于更一般的情况有其他的一些解决方案,Spearman秩相关系数就是其中一种。Spearman秩相关系数是一种无参数(与分布无关)检验方法,用于度量变量之间联系的强弱。在没有重复数据的情况下,如果一个变量是另外一个变量的严格单调函数,则Spearman秩相关系数就是+1或-1,称变量完全Spearman秩相关。注意这和Pearson完全相关的区别,只有当两变量存在线性关系时,Pearson相关系数才为+1或-1。




Spearman秩相关系数应该是从秩和检验延伸过来的,因为它们很像。

相关性和相似度的区别

X=(1,2,3)跟Y=(4,5,6)的皮尔森相关系数等于1,说明X和Y是严格线性相关的(事实上Y=X+3)。

但是X和Y的相似度却不是1,如果用余弦距离来度量,X和Y之间的距离明显大于0。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值