字符输入的区别及不同的排序算法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/iceSony/article/details/51292505
目前已知的三种输入函数
scanf()特点输入种类繁多,要求按照规定格式输入,期间不能加入空格(会数据丢失)
getchar()为单个字符输入,当输入多个字符则接收第一个字符
gets()接收一段字符串,当输入空格保存到字符串中
cin用法和scanf差不多,这里不多说
新建一个数组下标从0开始
常见的排序方法:冒泡排序和选择排序

冒泡排序:Bubble Sort
是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,
如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,
也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

步骤:
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3.针对所有的元素重复以上的步骤,除了最后一个。
4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
#include<stdio.h>

void Sort(int* f, int len)
{
	for(int i=0;i<len-1;i++)
		for(int j=0;j<len-1-i;j++)
		{
			if(f[j]>f[j+1])
			{
				int temp = f[j];
				f[j] = f[j+1];
				f[j+1] = temp;
			}
		}
}

int main()
{
	int f[12] = {11,32,14,53,43,9,19,23,27,35,56,4};
	Sort(f,12);
	for(int i=0;i<12;i++)
		printf("%d\t",f[i]);
	return 0;
}



选择排序:Selection sort
是一种简单直观的排序算法。它的工作原理如下。
首先在未排序序列中找到最小元素,存放到排序序列的起始位置,
然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。
以此类推,直到所有元素均排序完毕。
#include<stdio.h>

void Sort(int* f, int len)
{
	for(int i=0;i<len-1;i++)
	{
		int index = i;
		for(int j=i+1;j<len;j++)
		{
			if(f[j]<f[index])
			index = j;
		}
		if(index != i)
		{
			int temp = f[i];
			f[i] = f[index];
			f[index] = temp;
		}
	}
}

int main()
{
	int f[12] = {11,32,14,53,43,9,19,23,27,35,56,4};
	Sort(f,12);
	for(int i=0;i<12;i++)
		printf("%d\t",f[i]);
	return 0;
}



这里介绍一下其他五种排序方法
快速排序:
是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。
在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。
事实上,快速排序通常明显比其他Ο(n log n) 算法更快,
因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,
且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。

步骤:
1.从数列中挑出一个元素,称为 “基准”(pivot),
2.重新排序数列,所有元素比基准值小的摆放在基准前面,
所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
#include<stdio.h>

void Sort(int* f, int start,int end)
{
	if(start>end)
	return;
	int key = f[start];
	int i = start;
	int j = end;
	while(i<j)
	{
		while(i<j&&f[j]>key&&j--);
		f[i] = f[j];
		while(i<j&&f[i]<key&&i++);
		f[j] = f[i];
	}
	Sort(f,start,i-1);
	Sort(f,i+1,end);
}

int main()
{
	int f[12] = {11,32,14,53,43,9,19,23,27,35,56,4};
	Sort(f,0,11);
	for(int i=0;i<12;i++)
		printf("%d\t",f[i]);
	return 0;
}


归并排序:Merge sort
是建立在归并操作上的一种有效的排序算法。
该算法是采用分治法(Divide and Conquer)的一个非常典型的应用

步骤:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4.重复步骤3直到某一指针达到序列尾
5.将另一序列剩下的所有元素直接复制到合并序列尾

堆积排序:Heapsort
是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,
并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
步骤:http://www.cnblogs.com/dolphin0520/archive/2011/10/06/2199741.html

6. 插入排序:Insertion Sort
是一种简单直观的排序算法。它的工作原理是通过构建有序序列,
对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),
因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

步骤:
1.从第一个元素开始,该元素可以认为已经被排序
2.取出下一个元素,在已经排序的元素序列中从后向前扫描
3.如果该元素(已排序)大于新元素,将该元素移到下一位置
4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
5.将新元素插入到该位置中
6.重复步骤2

7. 希尔排序
也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
1、插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
2、但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位>
步骤:
1.先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组。
2.所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;
3.然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量   =1(   <   …<d2<d1),
即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法
比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比[2]  较就可能消除多个元素交换。
算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,
在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。
一般的初次取序列的一半为增量,以后每次减半,直到增量为1。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭