惯性导航之欧拉角与万向节死锁(三)

之前说过了,欧拉角有一些天生的缺陷,这里面最严重的就是”万向节死锁“,现在说一下什么是万向节死锁。


工具:

  • 三维笛卡尔直角坐标系
  • 欧拉角

一、欧拉角定义中的限制

前面已经说了,使用三个角度表示一个旋转就可以理解为欧拉角了,这种定义未免太宽泛,并没有多大的实际意义。所以使用欧拉角的时候需要很多的规定,我们的欧拉角:

  • 动态定义,围绕载体坐标系旋转
  • 旋转顺序,Z–>X–>Y(旋转顺序没有统一规定,不过在不同的领域可能有不同的使用习惯)
  • 范围:两个0-2Pi,一个0-Pi

如果不定义旋转的顺序,就会出现一组欧拉角对应多个空间点,也就是对应多个旋转(规定了顺序也会出现,下面会讲到)。举例:

  • 比如:(45,45,45)这个欧拉角组,大家可以拿一个物体试一下,将XYZ三个轴以不同的顺序旋转得到的最终位置是不一样的。

二、万向节死锁

万向节死锁是指当三个万向节其中两个的轴发生重合时,会失去一个自由度的情形,具体表现为:自由度的减少,多组欧拉角对应一个位置。在三维下,载体可以围绕自身坐标系的三个轴旋转,也就是会有3个自由度,当出现万向节死锁的时候,会有一个轴无论怎样旋转都不会达到想要的位置,这时就是缺少了一个自由度。自由度减少也表现为,可以只通过两个轴的旋转,达到三个轴旋转出现万向节死锁状态的位置。对于万向节死锁,下面有个视频以及一个讲的比较好的博客文章:

从视频里我们能够比较直观的对万向节死锁有个认识,我们还需要明确几点:

  • 欧拉角需要规定旋转顺序(可以根据个人喜好)
  • 旋转顺序在外层的轴会影响内层轴,内层轴不会影响外层轴
  • 中间轴(无论什么順规)旋转90度会出现万向节死锁

由于万向节死锁的存在,所以无法实现球面平滑插值,具体什么是球面平滑插值,我也不太明白,暂时用不到所以也就不说了。

解决以上问题的比较好的方法就是使用四元数,四元数有速度更快、提供平滑插值、有效避免万向锁问题、存储空间较小等优点。


接下来会写四元数部分的内容,也是比较复杂。如果我的理解有错误,还请大家留言指正啊…

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ice__snow/article/details/48918609
文章标签: 惯性导航
个人分类: 飞控 惯性导航
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭