python中的sum函数.sum(axis=1)

本文详细介绍了Python内置函数sum的基本用法及其与numpy.sum的区别。特别关注numpy.sum中axis参数的功能,包括如何按行或按列进行求和运算,并通过实例演示了不同参数设置下的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看起来挺简单的样子,但是在给sum函数中加入参数。sum(a,axis=0)或者是.sum(axis=1) 就有点不解了


在我实验以后发现 我们平时用的sum应该是默认的axis=0 就是普通的相加 (对不起,写的不好,看下面的


而当加入axis=1以后就是将一个矩阵的每一行向量相加


例如:

import numpy as np

np.sum([[0,1,2],[2,1,3]],axis=1)的结果就是:array([3,6])


希望可以帮到你 呵呵


Sorry,以前学习阶段写东西比较随意,现在补充完善一下:

1. python 自己的sum()

输入的参数首先是[]

>>> sum([0,1,2])
3
>>> sum([0,1,2],3)
6
>>> sum([0,1,2],[3,2,1])
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can only concatenate list (not "int") to list


2.python的 numpy当中

现在对于数据的处理更多的还是numpy。没有axis参数表示全部相加,axis=0表示按列相加,axis=1表示按照行的方向相加

>>> import numpy as np
>>> a=np.sum([[0,1,2],[2,1,3]])
>>> a
9
>>> a.shape
()
>>> a=np.sum([[0,1,2],[2,1,3]],axis=0)
>>> a
array([2, 2, 5])
>>> a.shape
(3,)
>>> a=np.sum([[0,1,2],[2,1,3]],axis=1)
>>> a
array([3, 6])
>>> a.shape
(2,)


### Retrieval Augmented Generation in NLP Models and Applications #### Definition and Concept Retrieval Augmented Generation (RAG) is a method that integrates retrieval-based and generation-based approaches, particularly useful for tasks requiring the reproduction of specific information. This technique leverages content pertinent to solving an input task as context, enabling more accurate knowledge retrieval which subsequently aids in generating better responses through iterative refinement processes [^1]. In addition, RAG significantly reduces model hallucination by grounding generated outputs on factual data retrieved from external sources or databases [^2]. #### General Process The general process of applying RAG within Natural Language Processing (NLP) involves several key steps: - **Contextual Information Collection**: Gathering relevant documents or pieces of text related to the query. - **Knowledge Retrieval**: Using these collected contexts to find precise facts or statements needed for response formulation. - **Response Generation**: Generating coherent answers based on both the original prompt and the retrieved information. This approach ensures that the final output not only addresses user queries accurately but also remains grounded in verified facts rather than potentially unreliable internal representations learned during training [^1]. #### Implementation Example Below demonstrates how one might implement a simple version of this concept using Python code snippets alongside popular libraries like Hugging Face Transformers for natural language understanding and FAISS for efficient similarity search among large document collections. ```python from transformers import pipeline import faiss import numpy as np def create_index(documents): """Creates an index structure suitable for fast nearest neighbor searches.""" embeddings = get_embeddings_for_documents(documents) dimensionality = len(embeddings[0]) # Initialize Faiss Index Flat L2 distance metric index = faiss.IndexFlatL2(dimensionality) # Add vectors into our searchable space index.add(np.array(embeddings).astype('float32')) return index def retrieve_relevant_contexts(query_embedding, index, top_k=5): """Finds most similar items given a query vector against indexed dataset""" distances, indices = index.search(np.array([query_embedding]).astype('float32'), k=top_k) return [(distances[i], idx) for i,idx in enumerate(indices.flatten())] # Assume `get_embeddings` function exists elsewhere... index = create_index(corpus_of_texts) qa_pipeline = pipeline("question-answering") for doc_id, score in retrieve_relevant_contexts(user_query_vector, index): answer = qa_pipeline(question=user_input, context=corpus_of_texts[doc_id]['text']) print(f"Answer found with relevance {score}: ",answer['answer']) ``` --related questions-- 1. What are some common challenges faced when implementing RAG systems? 2. Can you provide examples where RAG has been successfully applied outside traditional QA settings? 3. How does Graph Retrieval-Augmented Generation differ from standard RAG methods described here? 4. In what ways can integrating knowledge graphs enhance performance in RAG frameworks?
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值