在人工智能领域,Retrieval-Augmented Generation(RAG,检索增强型生成)已经成为一种重要的技术范式。它通过结合大型语言模型(LLM)的生成能力与实时数据检索,为自然语言处理任务带来了更精准、更动态的解决方案。随着技术的发展,RAG框架也在不断演变,出现了多种各具特色的架构。本文将介绍几种常见的RAG框架,包括传统RAG、Agentic RAG、Graph RAG、Adaptive RAG等,探讨它们的特点、优势以及适用场景。
1、传统RAG框架
传统RAG框架是RAG技术的基础形态,其核心在于将LLM的生成能力与外部检索机制相结合。具体来说,它通过检索外部知识库、API或网页中的实时信息,弥补LLM静态预训练数据的不足,从而生成更符合上下文且准确的输出。这种框架通常包含三个主要组件:检索(Retrieve)、增强(Augmentation)和生成(Generation)。检索模块负责从外部数据源查询相关信息;增强模块对检索到的数据进行处理,提取关键信息以适配查询上下文;生成模块则将检索到的信息与LLM的预训练知识结合,生成连贯且符合上下文的响应。
传统RAG框架的优势在于其简单性和易于实现的特点,适合处理事实性查询任务。然而,它也存在一些局限性,如缺乏上下文感知能力、输出可能碎片化、在大规模数据集上检索效率较低等。尽管如此,传统RAG为后续更复杂的RAG框架奠定了基础。
2、Agentic RAG框架
Agentic RAG框架是RAG技术的一次重大突破,它通过引入自主AI代理(Agent)来克服传统RAG的静态工作流和适应性不足的问题。在Agentic RAG中,自主代理能够动态管理检索策略、迭代优化上下文理解,并根据复杂任务需求调整工作流。这些代理利用反射(Reflection)、规划(Planning)、工具使用(Tool Use)和多代理协作(Multi-Agent Collaboration)等代理设计模式,实现对检索和生成过程的动态优化。
Agentic RAG的关键特点包括自主决策、迭代优化和工作流动态调整。例如,在处理复杂的多步推理任务时,代理可以通过规划将任务分解为多个子任务,并动态选择最适合的检索策略和工具。此外,代理之间的协作能够进一步提升系统的灵活性和适应性。Agentic RAG在需要高精度和动态适应性的领域表现出色,如金融分析、医疗诊断和自适应学习平台等。
3、 Graph RAG框架
Graph RAG框架通过引入图结构数据(如知识图谱),扩展了传统RAG的能力。它利用图数据中的节点连接性、层次结构和关系信息,增强多跳推理和上下文丰富度。在Graph RAG中,检索过程不仅依赖于传统的文本相似性,还会考虑图中的关系路径,从而生成更准确、更符合关系逻辑的输出。
Graph RAG的主要优势在于其对结构化数据的处理能力,特别适合于需要关系推理的任务,如医疗诊断、法律研究和知识图谱问答等。例如,在医疗领域,Graph RAG可以通过分析疾病与症状之间的关系图,结合患者的病历信息,生成更精准的诊断建议。然而,Graph RAG也面临一些挑战,如对高质量图数据的依赖、可扩展性受限以及与非结构化数据检索系统的集成复杂性。
4、 Adaptive RAG框架
Adaptive RAG框架的核心在于动态调整检索策略以适应不同复杂度的查询。它通过一个分类器评估查询的复杂性,并根据评估结果选择最适合的检索和生成路径。对于简单的事实性问题,系统可以直接利用LLM的知识生成答案,无需额外检索;对于需要少量上下文的简单查询,系统执行单步检索;而对于复杂的多步推理查询,系统则会激活多步检索过程,逐步优化中间结果,最终生成全面的答案。
Adaptive RAG的优势在于其灵活性和资源效率。它能够根据查询的复杂性动态调整处理方式,避免不必要的计算开销,同时确保复杂查询的高精度处理。这种框架特别适合于需要处理多样化查询的应用场景,如智能客服、信息检索助手等。
5、 Agentic Document Workflows(ADW)
Agentic Document Workflows(ADW)是一种专门针对文档处理的RAG框架,它将文档解析、检索、推理和结构化输出整合到一个端到端的工作流中。ADW通过维护文档状态、协调多步工作流并应用领域特定的逻辑,解决了传统文档处理系统在复杂工作流中的局限性。
在ADW中,文档首先被解析以提取关键信息,然后系统根据文档内容从外部知识库或向量索引中检索相关参考信息。智能代理负责应用业务规则、执行多跳推理并生成可操作的建议。例如,在发票支付工作流中,ADW可以解析发票信息,检索对应的供应商合同条款,分析支付条款,并生成包含原始应付金额、早付折扣、预算影响分析等内容的支付建议报告。ADW的优势在于其对文档工作流的全面支持、领域特定的智能处理以及可扩展性,适用于合同审核、发票处理、索赔分析等企业级文档处理场景。
6、 Corrective RAG框架
Corrective RAG框架通过引入自我修正机制,提升了检索结果的质量和生成回答的准确性。它在检索过程中动态评估检索到的文档的相关性,并在发现不相关或模糊的文档时触发修正步骤。这些修正步骤包括优化查询、从外部数据源获取额外信息等,以确保生成的回答基于高质量、相关性强的信息。
Corrective RAG的主要特点包括文档相关性评估、查询优化和动态外部检索。例如,在学术研究助理的场景中,当检索到的文献与用户查询不匹配时,系统会重新调整查询关键词,从学术数据库中获取更相关的文献,从而生成更准确的研究综述。这种框架特别适合于对信息准确性要求较高的场景,如学术研究、市场调研等。
7、GeAR(Graph-Enhanced Agent for Retrieval-Augmented Generation)
GeAR框架通过结合图扩展技术和代理架构,增强了RAG系统在多跳检索场景中的能力。它利用图结构数据扩展传统的检索过程,使系统能够在检索时考虑实体之间的关系,从而更好地处理复杂的多跳查询。
GeAR的关键创新在于其图扩展模块和代理驱动的检索机制。图扩展模块允许系统在检索过程中探索图中的连接实体,扩大检索范围;代理架构则能够根据查询的复杂性自主选择和组合检索策略。例如,在回答“某位作家的导师受到哪些作家影响”这类多跳问题时,GeAR可以通过图扩展模块追溯导师的文学关系,并结合文本数据源中的详细信息,生成准确的回答。这种框架特别适合于需要处理复杂关系和多跳推理的任务,如文学研究、历史分析等。
8、单代理与多代理RAG架构
除了上述特定类型的RAG框架外,RAG系统还可以根据代理的数量和协作方式分为单代理架构和多代理架构。
单代理架构
单代理RAG架构是一种集中式决策系统,其中单一代理负责管理整个检索、路由和信息整合过程。这种架构的优点在于其简洁性,所有任务都由一个代理完成,使得系统设计、实现和维护相对简单。单代理架构适用于工具或数据源数量有限的场景,能够快速处理查询并生成响应。
例如,在客户支持场景中,用户询问订单的配送状态,单代理系统可以快速分析查询,从订单管理系统数据库中检索跟踪信息,从快递提供商API获取实时更新,并结合网络搜索结果生成综合回答。
多代理架构
多代理RAG架构则是一种模块化和可扩展的系统,通过多个专业代理协作处理复杂查询。每个代理专注于特定类型的任务或数据源,如结构化数据查询、语义搜索、实时信息检索等。这种架构的优势在于其灵活性和可扩展性,能够高效处理高查询量和复杂任务。
例如,在多领域研究助手场景中,用户询问可再生能源在欧洲的经济和环境影响,系统可以将查询分配给多个代理:一个代理从经济数据库中检索统计数据,另一个代理通过语义搜索查找相关学术论文,第三个代理进行网络搜索以获取最新政策更新,最后一个代理提供相关报告或专家评论的建议。最终,这些代理的结果被整合到一个连贯的回答中,为用户提供全面的信息。
RAG框架的多样性为自然语言处理任务提供了丰富的解决方案。从传统RAG的简单检索增强,到Agentic RAG的动态代理协作,再到Graph RAG的关系推理和Adaptive RAG的动态策略调整,每种框架都有其独特的应用场景和优势。随着技术的不断进步,RAG框架将继续演化,以满足更复杂、更动态的现实世界需求。无论是在金融、医疗、教育还是创意产业,RAG技术都展现出巨大的潜力,为实现更智能、更精准的人工智能应用奠定了坚实的基础。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。