大模型笔记:RAG(Retrieval Augmented Generation,检索增强生成)

1 大模型知识更新的困境

  • 大模型的知识更新是很困难的,主要原因在于:
    • 训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识
    • 参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间
    • LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱
  • ——>LLM的知识具有静态、封闭和有限的特点。
  • ——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生

2 RAG介绍

这是一个RAG的例子,来自专补大模型短板的RAG有哪些新进展?这篇综述讲明白了

  • 我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。
  • 由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。(without RAG)
  • RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。
    • 它获取了一系列与询问相关的新闻文章。
    • 这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值