1 大模型知识更新的困境
- 大模型的知识更新是很困难的,主要原因在于:
- 训练数据集固定,一旦训练完成就很难再通过继续训练来更新其知识
- 参数量巨大,随时进行fine-tuning需要消耗大量的资源,并且需要相当长的时间
- LLM的知识是编码在数百亿个参数中的,无法直接查询或编辑其中的知识图谱
- ——>LLM的知识具有静态、封闭和有限的特点。
- ——>为了赋予LLM持续学习和获取新知识的能力,RAG应运而生
2 RAG介绍
这是一个RAG的例子,来自专补大模型短板的RAG有哪些新进展?这篇综述讲明白了
- 我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。
- 由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。(without RAG)
- RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。
- 它获取了一系列与询问相关的新闻文章。
- 这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应