计算点到直线方程的投影点坐标

点 $(x_0, y_0)$到直线 $ax + by + c = 0$的垂足的坐标 $(x_1, y_1)$ 满足以下条件:

- 点 $(x_1, y_1)$ 在直线上
- 点 $(x_1, y_1)$ 到点 $(x_0, y_0)$ 的距离是最小的

根据定义可知,点 $(x_0, y_0)$ 到直线的距离为 $$\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$ 。点 $(x_1, y_1)$ 到点 $(x_0, y_0)$ 的距离为 $$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$ 。

所以我们可以设这两个距离的平方和为 $$d(x_0, y_0) = \left(\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}\right)^2 + (x_1 - x_0)^2 + (y_1 - y_0)^2$$ ,我们希望最小化 $$d(x_0, y_0)$$ 。

于是我们得到优化问题:

$$\min d(x_1, y_1) = \left(\frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}\right)^2 + (x_1 - x_0)^2 + (y_1 - y_0)^2$$

对 $x_0$ 和 $y_0$ 求导,得到:

$$\begin{aligned} \frac{\partial d(x_0, y_0)}{\partial x_0} &= 2\left(\frac{ax_0 + by_0 + c}{a^2 + b^2}\right)a + 2(x_1 - x_0) = 0 \\ \frac{\partial d(x_0, y_0)}{\partial y_0} &= 2\left(\frac{ax_0 + by_0 + c}{a^2 + b^2}\right)b + 2(y_1 - y_0) = 0 \end{aligned}$$

解得:

$$ x_1 = x_0 - \frac{a(ax_0 + by_0 + c)}{a^2 + b^2} $$
$$ y_1 = y_0 - \frac{b(ax_0 + by_0 + c)}{a^2 + b^2} $$

所以得到:
点到直线距离的公式:
设点 P(x0, y0),直线方程为 Ax + By + C = 0,则点 P 到直线的距离为:
dist = |Ax0 + By0 + C| / sqrt(A^2 + B^2)
垂足的坐标为(x1, y1),我们可以用如下的方法求出坐标:
x1 = x0 - dist * A / sqrt(A^2 + B^2)
y1 = y0 - dist * B / sqrt(A^2 + B^2)
下面是一个完整的c++实现例子:


#include <iostream>
#include <cmath>
using namespace std;
int main() {
// 点的坐标
double x0 = 1.0, y0 = 1.0;
// 直线方程参数
double A = 1.0, B = 1.0, C = 0.0;
// 计算点到直线的距离
double dist = fabs(A * x0 + B * y0 + C) / sqrt(A * A + B * B);
// 计算投影点的坐标
double x1 = x0 - dist * A / sqrt(A * A + B * B);
double y1 = y0 - dist * B / sqrt(A * A + B * B);
// 输出结果
cout << "投影点的坐标为:(" << x1 << ", " << y1 << ")" << endl;
return 0;
}

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值