计算三维空间(推广到K维)中点到平面的投影点坐标

本文详细介绍了如何在三维及K维空间中计算点到平面的投影坐标,提供了利用参数方程和垂直性质两种方法,并通过数学推导得出投影点的坐标表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算三维空间中点到平面的投影点坐标


问题概述:

三维平面的一般方程为:
(1) A x + B y + C z + D = 0 Ax+By+Cz+D = 0\tag{1} Ax+By+Cz+D=0(1)
已知点 ( a , b , c ) (a,b,c) (a,b,c),求该点在平面上的投影 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)

方法一(利用参数方程):

显然连接点 ( a , b , c ) (a,b,c) (a,b,c)和点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)所形成的直线(假设为 l 1 l_1 l1)肯定与该平面的法向量平行,则向量 ( A , B , C ) (A,B,C) (A,B,C)(平面的法向量)是直线 l 1 l_1 l1的方向向量。所以已知直线上一点和直线的方向向量,我们可以得到直线 l 1 l_1 l1的参数方程如下:
(2.1) x − a A = y − b B = z − c C = t \cfrac{x-a}{A}=\cfrac{y-b}{B}=\cfrac{z-c}{C}=t \tag{2.1} Axa=Byb=Czc=t(2.1)
则可得
(2.2) { x = A t + a y = B t + b z = C t + c \begin{cases} x = At + a \tag{2.2} \\ y = Bt + b \\ z = Ct + c \\ \end{cases} x=At+ay=Bt+bz=Ct+c(2.2)
( 2.2 ) (2.2) (2.2)代入原方程 ( 1 ) (1) (1)
A x + B y + C z + D = A ∗ ( A t + a ) + B ∗ ( B t + b ) + C ∗ ( C t + c ) + D = A 2 t + A a + B 2 t + B b + C 2 t + C c + D = ( A 2 + B 2 + C 2 ) t + A a + B b + C c + D \begin{aligned} &Ax+By+Cz+D\\ =&A*(At+a)+B*(Bt+b)+C*(Ct+c)+D\\ =&A^2t+Aa+B^2t+Bb+C^2t+Cc+D\\ =&(A^2+B^2+C^2)t+Aa+Bb+Cc+D\\ \end{aligned} ===Ax+By+Cz+DA(At+a)+B(Bt+b)+C(Ct+c)+DA2t+Aa+B2t+Bb+C2t+Cc+D(A2+B2+C2)t+Aa+Bb+Cc+D

(2.3) ( A 2 + B 2 + C 2 ) t + A a + B b + C c + D = 0 (A^2+B^2+C^2)t+Aa+Bb+Cc+D=0\tag{2.3} (A2+B2+C2)t+Aa+Bb+Cc+D=0(2.3)
化简式 ( 2.3 ) (2.3) (2.3)
(2.4) t = − ( A a + B b + C c + D ) ( A 2 + B 2 + C 2 ) t = \cfrac{-(Aa+Bb+Cc+D)}{(A^2+B^2+C^2)}\tag{2.4} t=(A2+B2+C2)(Aa+Bb+Cc+D)(2.4)
( 2.4 ) (2.4) (2.4)代入 ( 2.2 ) (2.2) (2.2)中得:
(2.5) ( x 0 , y 0 , z 0 ) = { x 0 = A t + a y 0 = B t + b z 0 = C t + c = { x 0 = − A ∗ ( B b + C c + D ) + a ∗ ( B 2 + C 2 ) ( A 2 + B 2 + C 2 ) y 0 = − B ∗ ( A a + C c + D ) + b ∗ ( A 2 + C 2 ) ( A 2 + B 2 + C 2 ) z 0 = − C ∗ ( A a + B b + D ) + c ∗ ( A 2 + B 2 ) ( A 2 + B 2 + C 2 ) \begin{aligned} (x_0,y_0,z_0)&=\tag{2.5} \begin{cases} x_0 = At + a \\ y_0 = Bt + b \\ z_0 = Ct + c \\ \end{cases}\\ &= \begin{cases} x_0 = \cfrac{-A*(Bb+Cc+D)+a*(B^2+C^2)}{(A^2+B^2+C^2)} \\ y_0 = \cfrac{-B*(Aa+Cc+D)+b*(A^2+C^2)}{(A^2+B^2+C^2)} \\ z_0 = \cfrac{-C*(Aa+Bb+D)+c*(A^2+B^2)}{(A^2+B^2+C^2)} \\ \end{cases} \end{aligned} (x0,y0,z0)=x0=At+ay0=Bt+bz0=Ct+c=x0=(A2+B2+C2)A(Bb+Cc+D)+a(B2+C2)y0=(A2+B2+C2)B(Aa+Cc+D)+b(A2+C2)z0=(A2+B2+C2)C(Aa+Bb+D)+c(A2+B2)(2.5)
即可求得投影点坐标 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)


方法二(利用垂直的性质):

同上,显然连接点 ( a , b , c ) (a,b,c) (a,b,c)和点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)所形成的直线(假设为 l 1 l_1 l1)肯定与该平面的法向量平行,即与该平面垂直
易得该平面与 x O y xOy xOy平面的交线(假设为 l x y l_{xy} lxy)(令 z = 0 z=0 z=0即可)
(3.1) l x y : A x + B y + D = 0 l_{xy}:Ax+By+D=0\tag{3.1} lxy:Ax+By+D=0(3.1)
同理得该平面与 x O z xOz xOz平面的交线(假设为 l x z l_{xz} lxz
(3.2) l x z : A x + C z + D = 0 l_{xz}:Ax+Cz+D=0\tag{3.2} lxz:Ax+Cz+D=0(3.2)
则有 l 1 l_1 l1 l x y l_{xy} lxy垂直,可得:
(3.3) − B ∗ ( x 0 − a ) + A y − b = 0 -B*(x_0-a)+Ay-b = 0\tag{3.3} B(x0a)+Ayb=0(3.3)
又有 l 1 l_1 l1 l x z l_{xz} lxz垂直,可得:
(3.4) − C ∗ ( x 0 − a ) + A z − c = 0 -C*(x_0-a)+Az-c = 0\tag{3.4} C(x0a)+Azc=0(3.4)
将公式 ( 3.3 ) , ( 3.4 ) (3.3),(3.4) (3.3),(3.4)代入 ( 1 ) (1) (1)中得:
(3.5) x 0 = − A ∗ ( B b + C c + D ) + a ∗ ( B 2 + C 2 ) ( A 2 + B 2 + C 2 ) x_0 = \cfrac{-A*(Bb+Cc+D)+a*(B^2+C^2)}{(A^2+B^2+C^2)}\tag{3.5} x0=(A2+B2+C2)A(Bb+Cc+D)+a(B2+C2)(3.5)
将公式 ( 3.5 ) (3.5) (3.5)代入 ( 3.3 ) , ( 3.4 ) (3.3),(3.4) (3.3),(3.4)中得:
(3.6) { x 0 = − A ∗ ( B b + C c + D ) + a ∗ ( B 2 + C 2 ) ( A 2 + B 2 + C 2 ) y 0 = − B ∗ ( A a + C c + D ) + b ∗ ( A 2 + C 2 ) ( A 2 + B 2 + C 2 ) z 0 = − C ∗ ( A a + B b + D ) + c ∗ ( A 2 + B 2 ) ( A 2 + B 2 + C 2 ) \begin{cases} x_0 = \cfrac{-A*(Bb+Cc+D)+a*(B^2+C^2)}{(A^2+B^2+C^2)} \tag{3.6}\\ y_0 = \cfrac{-B*(Aa+Cc+D)+b*(A^2+C^2)}{(A^2+B^2+C^2)} \\ z_0 = \cfrac{-C*(Aa+Bb+D)+c*(A^2+B^2)}{(A^2+B^2+C^2)} \\ \end{cases} x0=(A2+B2+C2)A(Bb+Cc+D)+a(B2+C2)y0=(A2+B2+C2)B(Aa+Cc+D)+b(A2+C2)z0=(A2+B2+C2)C(Aa+Bb+D)+c(A2+B2)(3.6)
即可求得投影点坐标 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)


推广到计算K维空间中点到平面的投影点坐标

此处只介绍参数方程的方法,方法二可自行推广,得到的结果是一样的

问题概述:

三维平面的一般方程为:
(1) A 1 x 1 + A 2 x 2 + . . . + A k x k + D = 0 A_1x_1+A_2x_2+...+A_kx_k+D = 0\tag{1} A1x1+A2x2+...+Akxk+D=0(1)
已知点 P ( p 1 , p 2 , . . . , p k ) P(p_1,p_2,...,p_k) P(p1,p2,...,pk),求该点在平面上的投影 ( v 1 , v 2 , . . . , v k ) (v_1,v_2,...,v_k) (v1,v2,...,vk)

方法一(利用参数方程):

显然连接点 ( p 1 , p 2 , . . . , p k ) (p_1,p_2,...,p_k) (p1,p2,...,pk)和点 ( v 1 , v 2 , . . . , v k ) (v_1,v_2,...,v_k) (v1,v2,...,vk)所形成的直线(假设为 l 1 l_1 l1)肯定与该平面的法向量平行,则向量 ( A 1 , A 2 , . . . , A k ) (A_1,A_2,...,A_k) (A1,A2,...,Ak)(平面的法向量)是直线 l 1 l_1 l1的方向向量。所以已知直线上一点和直线的方向向量,我们可以得到直线 l 1 l_1 l1的参数方程如下:
(2.1) x 1 − p 1 A 1 = x 2 − p 2 A 2 = . . . = x k − p k A k = t \cfrac{x_1-p_1}{A_1}=\cfrac{x_2-p_2}{A_2}=...=\cfrac{x_k-p_k}{A_k}=t \tag{2.1} A1x1p1=A2x2p2=...=Akxkpk=t(2.1)
则可得
(2.2) { v 1 = A 1 t + p 1 v 2 = A 2 t + p 2 . . . v k = A k t + p k \begin{cases} v_1 &=& A_1t + p_1 \tag{2.2} \\ v_2 &=& A_2t + p_2 \\ &...&\\ v_k &=& A_kt + p_k \\ \end{cases} v1v2vk==...=A1t+p1A2t+p2Akt+pk(2.2)
( 2.2 ) (2.2) (2.2)代入原方程 ( 1 ) (1) (1)
A 1 x 1 + A 2 x 2 + . . . + A k x k + D = A 1 ∗ ( A 1 t + p 1 ) + A 2 ∗ ( A 2 t + p 2 ) + . . . + A k ∗ ( A k t + p k ) + D = A 1 2 + A 1 ∗ p 1 + A 2 2 + A 2 ∗ p 2 + . . . + A k 2 + A k ∗ p k + D = ( A 1 2 + A 2 2 + . . . + A k 2 ) t + A 1 P 1 + A 2 P 2 + . . . + A k P k + D \begin{aligned} &A_1x_1+A_2x_2+...+A_kx_k+D\\ =&A_1*(A_1t+p_1)+A_2*(A_2t+p_2)+...+A_k*(A_kt+p_k)+D\\ =&A_1^2+A_1*p_1+A_2^2+A_2*p_2+...+A_k^2+A_k*p_k+D\\ =&(A_1^2+A_2^2+...+A_k^2)t+A_1P_1+A_2P_2+...+A_kP_k+D\\ \end{aligned} ===A1x1+A2x2+...+Akxk+DA1(A1t+p1)+A2(A2t+p2)+...+Ak(Akt+pk)+DA12+A1p1+A22+A2p2+...+Ak2+Akpk+D(A12+A22+...+Ak2)t+A1P1+A2P2+...+AkPk+D

(2.3) ( A 1 2 + A 2 2 + . . . + A k 2 ) t + A 1 P 1 + A 2 P 2 + . . . + A k P k + D = 0 (A_1^2+A_2^2+...+A_k^2)t+A_1P_1+A_2P_2+...+A_kP_k+D=0\tag{2.3} (A12+A22+...+Ak2)t+A1P1+A2P2+...+AkPk+D=0(2.3)
化简式 ( 2.3 ) (2.3) (2.3)
(2.4) t = − ( A 1 P 1 + A 2 P 2 + . . . + A k P k + D ) ( A 1 2 + A 2 2 + . . . + A k 2 ) t = \cfrac{-(A_1P_1+A_2P_2+...+A_kP_k+D)}{(A_1^2+A_2^2+...+A_k^2)}\tag{2.4} t=(A12+A22+...+Ak2)(A1P1+A2P2+...+AkPk+D)(2.4)
( 2.4 ) (2.4) (2.4)代入 ( 2.2 ) (2.2) (2.2)中得:
(2.5) ( v 1 , v 2 , . . . , v k ) = { v 1 = A 1 t + p 1 v 2 = A 2 t + p 2 . . . v k = A k t + p k = { v 1 = − A 1 ∗ ( A 1 p 1 + A 2 p 2 + . . . + A k p k + D − A 1 p 1 ) + p 1 ∗ ( A 1 2 + A 2 2 + . . . + A k 2 − A 1 2 ) ( A 1 2 + A 2 2 + . . . + A k 2 ) ) v 2 = − A 2 ∗ ( A 1 p 1 + A 2 p 2 + . . . + A k p k + D − A 2 p 2 ) + p 2 ∗ ( A 1 2 + A 2 2 + . . . + A k 2 − A 2 2 ) ( A 1 2 + A 2 2 + . . . + A k 2 ) ) . . . v k = − A 3 ∗ ( A 1 p 1 + A 2 p 2 + . . . + A k p k + D − A k p k ) + p 3 ∗ ( A 1 2 + A 2 2 + . . . + A k 2 − A k 2 ) ( A 1 2 + A 2 2 + . . . + A k 2 ) ) \begin{aligned} &(v_1,v_2,...,v_k)\\ &=\tag{2.5} \begin{cases} v_1 &=& A_1t + p_1 \\ v_2 &=& A_2t + p_2 \\ &...&\\ v_k &=& A_kt + p_k \\ \end{cases}\\ &= \begin{cases} v_1 &=& \cfrac{-A_1*(A_1p_1+A_2p_2+...+A_kp_k+D-A_1p_1)+p_1*(A_1^2+A_2^2+...+A_k^2-A_1^2)}{(A_1^2+A_2^2+...+A_k^2))} \\ v_2 &=& \cfrac{-A_2*(A_1p_1+A_2p_2+...+A_kp_k+D-A_2p_2)+p_2*(A_1^2+A_2^2+...+A_k^2-A_2^2)}{(A_1^2+A_2^2+...+A_k^2))} \\ &...&\\ v_k &=& \cfrac{-A_3*(A_1p_1+A_2p_2+...+A_kp_k+D-A_kp_k)+p_3*(A_1^2+A_2^2+...+A_k^2-A_k^2)}{(A_1^2+A_2^2+...+A_k^2))} \\ \end{cases} \end{aligned} (v1,v2,...,vk)=v1v2vk==...=A1t+p1A2t+p2Akt+pk=v1v2vk==...=(A12+A22+...+Ak2))A1(A1p1+A2p2+...+Akpk+DA1p1)+p1(A12+A22+...+Ak2A12)(A12+A22+...+Ak2))A2(A1p1+A2p2+...+Akpk+DA2p2)+p2(A12+A22+...+Ak2A22)(A12+A22+...+Ak2))A3(A1p1+A2p2+...+Akpk+DAkpk)+p3(A12+A22+...+Ak2Ak2)(2.5)
即可求得投影点坐标 ( v 1 , v 2 , . . . , v k ) (v_1,v_2,...,v_k) (v1,v2,...,vk)

例题:
2018北京ICPC网络赛H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值