0. 前言
- 相关资料:
- arxiv
- github
- 论文解读
- 论文基本信息
- 领域:时空行为检测
- 作者单位:上海交大&上海大学
- 发表时间:ECCV 2020
1. 要解决什么问题
- 之前的 action detection 方法都是先在 frame-wise 或 clip wise 进行检测,得到 action proposals,在连接结果。
- 因为要对每一帧都要进行检测,所以从时间性能上看很受到限制。
- 每次输入都是一帧或几帧(clip),所以得到的信息都收到了限制,在进行行为分类或行为定位(localization)时也都会存在限制。
- 训练过程中,tubes一般都是不完整的(因为整个tube的所包含的帧太多,每个样本输入的帧数量有限)。
- 在遇到存在偏差的bbox时,基于IOU的link方法会导致误差累积,结果不准确。
2. 用了什么方法
- 提出了 Corarse-to-fine action detector(CFAD) 用来替代 detect-and-link 策略
- 思路是:较近时间间隔内bbox的变化是线性的,也就是说,不用每一帧都进行检测。
- 以前方法的思路以及CFAD思路对比如下图
- 以前的方法是先Detection再Link。
- CFAD是

本文探讨了上海交大和上海大学合作的ECCV2020论文,提出了一种名为CFAD的时空行为检测方法,通过减少帧级检测,显著提高检测速度,同时保持相近的mAP。方法主要针对检测-链接策略的局限性,采用粗细两级检测,有效应对偏差bbox问题。
最低0.47元/天 解锁文章
3900

被折叠的 条评论
为什么被折叠?



