模拟退火算法

模拟退火算法是一种元启发式搜索算法,源于固体退火原理,用于解决全局优化问题。它通过引入随机因素,以一定概率接受恶化解,避免爬山算法陷入局部最优。算法包括初始化、新解生成、Metropolis准则判断等步骤,能够跳出局部最优解,趋向全局最优解。
摘要由CSDN通过智能技术生成

一、爬山算法(Hill Climbing)

        介绍模拟退火算法前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间选择一个优化解作为当前解,直到找到局部最优解。该算法实现很简单,其主要缺点是会陷入局部最优解,而不一定找到全局最优解。比如在B点附近搜索会得到A点局部最优解,但C点才是全局最优解。


二、模拟退火算法(Simulated Annealing)

        爬山算法是一种完全的贪心法,每次都选择当前优化解,因此只能找到局部最优解。而模拟退火算法也是一种贪心算法,但是在搜索过程中引入随机因素,可以以一定概率接受恶化解&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值