【图像分割】基于PCA 和迭代 Canny Edge皮肤病变分割算法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

智能优化算法   神经网络预测       雷达通信         无线传感器        电力系统

信号处理           图像处理               路径规划         元胞自动机        无人机  

物理应用        机器学习系列       车间调度系列 滤波跟踪系列     数据分析系列 

图像处理系列

🔥 内容介绍

皮肤病变分割是计算机辅助皮肤癌诊断的关键步骤,准确分割病变区域对于提高诊断效率和准确性至关重要。本文提出了一种基于主成分分析(PCA)和迭代Canny边缘检测的皮肤病变分割算法。该算法首先利用PCA进行图像预处理,降低噪声干扰,增强病变区域的特征。随后,采用迭代Canny边缘检测方法,通过动态调整阈值,逐步提取病变边缘。通过迭代过程,逐步优化边缘连接,填补边缘断裂,最终得到精确的病变轮廓。实验结果表明,本文提出的算法在皮肤病变分割任务中,能够有效地抑制噪声,准确地识别病变区域,并获得较好的分割性能。

引言

皮肤癌是全球范围内发病率最高的癌症之一,早期诊断和治疗能够显著提高患者的生存率。皮肤镜是一种无创的诊断工具,能够帮助医生观察皮肤表面以下的结构特征,从而辅助诊断。然而,皮肤镜图像的解读仍然依赖于医生的经验,存在主观性和效率问题。计算机辅助诊断(CAD)系统能够客观地分析皮肤镜图像,提供诊断辅助信息,提高诊断效率和准确性,因此具有重要的研究价值。

皮肤病变分割是CAD系统的首要环节,其目的是自动将皮肤病变区域从背景皮肤中分离出来。准确的病变分割对于后续的特征提取、分类和诊断至关重要。然而,皮肤镜图像的分割面临着诸多挑战,例如:

  • 低对比度:

     病变区域与周围皮肤的对比度较低,难以区分。

  • 不规则形状:

     病变区域的形状不规则,边缘模糊。

  • 噪声干扰:

     皮肤镜图像中存在大量的噪声,如毛发、气泡和光照不均等。

  • 病变多样性:

     不同的皮肤病变具有不同的颜色、纹理和形状特征。

针对以上挑战,国内外学者提出了各种各样的皮肤病变分割算法,包括基于阈值的分割、基于区域的分割、基于边缘的分割和基于深度学习的分割等。

本文提出了一种基于PCA和迭代Canny边缘检测的皮肤病变分割算法,旨在克服传统分割算法的局限性,提高分割的准确性和鲁棒性。

相关工作

传统的皮肤病变分割算法包括:

  • 基于阈值的分割:

     简单易实现,但对图像的对比度和光照条件要求较高,难以处理复杂情况。

  • 基于区域的分割:

     利用区域生长或区域合并等方法,但容易受到噪声和初始种子点的影响。

  • 基于边缘的分割:

     通过检测图像的边缘信息,将病变区域与周围皮肤区分开,但容易受到噪声和边缘断裂的影响。

近年来,基于深度学习的分割算法取得了显著的进展。例如,U-Net及其变体在皮肤病变分割任务中表现出色,能够学习图像的上下文信息,从而提高分割的准确性。然而,深度学习算法需要大量的标注数据进行训练,并且容易受到过拟合的影响。

为了克服以上算法的局限性,研究人员提出了许多改进方案。例如,结合颜色空间变换、纹理特征和形态学操作等方法,能够提高分割的鲁棒性。此外,引入主动轮廓模型和图割算法等技术,能够优化分割结果,提高分割的准确性。

本文提出的算法

本文提出的基于PCA和迭代Canny边缘检测的皮肤病变分割算法,主要包括以下几个步骤:

  1. 图像预处理:

     利用PCA进行图像增强和去噪。

  2. Canny边缘检测:

     利用Canny边缘检测算法提取图像的边缘信息。

  3. 迭代优化:

     通过迭代调整Canny边缘检测的阈值,逐步优化边缘连接,填补边缘断裂。

  4. 轮廓提取:

     从边缘图像中提取病变轮廓。

3.1 图像预处理

皮肤镜图像中存在大量的噪声,这些噪声会影响后续的分割精度。主成分分析(PCA)是一种常用的降维和去噪方法,能够将图像分解成一系列互不相关的成分,从而降低噪声的影响。

具体步骤如下:

  • 颜色空间转换:

     将RGB颜色空间转换到Lab颜色空间。Lab颜色空间更接近人眼对颜色的感知,能够更好地反映病变区域的颜色特征。

  • PCA变换:

     对Lab颜色空间的三个通道进行PCA变换,提取图像的主要成分。

  • 成分重构:

     利用提取的主要成分重构图像,去除噪声。

通过PCA变换,可以有效地降低噪声,增强病变区域的特征,为后续的分割奠定基础。

3.2 Canny边缘检测

Canny边缘检测算法是一种经典的边缘检测算法,具有较好的抗噪性和边缘定位精度。Canny边缘检测的主要步骤包括:

  • 高斯滤波:

     利用高斯滤波器平滑图像,降低噪声的影响。

  • 梯度计算:

     计算图像的梯度幅值和方向。

  • 非极大值抑制:

     对梯度幅值进行非极大值抑制,细化边缘。

  • 双阈值检测:

     利用高低两个阈值,检测边缘。

Canny边缘检测算法能够有效地提取图像的边缘信息,但容易受到阈值的影响。如果阈值设置过高,则会遗漏一些弱边缘;如果阈值设置过低,则会引入一些噪声边缘。

3.3 迭代优化

为了克服Canny边缘检测算法对阈值的敏感性,本文采用迭代优化的方法,动态调整阈值,逐步优化边缘连接,填补边缘断裂。

具体步骤如下:

  • 初始化阈值:

     设置初始的高低阈值。

  • Canny边缘检测:

     利用Canny边缘检测算法提取图像的边缘信息。

  • 边缘连接:

     利用边缘连接算法将断裂的边缘连接起来。

  • 阈值调整:

     根据边缘连接的结果,动态调整高低阈值。如果边缘连接的数量较少,则降低阈值;如果边缘连接的数量较多,则提高阈值。

  • 迭代终止条件:

     设置迭代次数或阈值变化范围,当满足迭代终止条件时,停止迭代。

通过迭代优化,可以逐步提高边缘的连接性,填补边缘断裂,从而获得更精确的病变轮廓。

3.4 轮廓提取

经过迭代优化后,可以得到边缘图像。从边缘图像中提取病变轮廓的方法有很多种,例如,可以利用轮廓跟踪算法或霍夫变换算法等。

本文采用轮廓跟踪算法提取病变轮廓。轮廓跟踪算法从边缘图像的某个像素点开始,沿着边缘方向进行跟踪,直到回到起始点,从而形成一个轮廓。

实验结果与分析

为了验证本文提出的算法的有效性,我们在公开的皮肤镜图像数据集上进行了实验。该数据集包含了各种类型的皮肤病变图像,如黑素瘤、痣和脂溢性角化病等。

我们将本文提出的算法与几种传统的分割算法进行了比较,包括基于阈值的分割、基于区域的分割和基于Canny边缘检测的分割。实验结果表明,本文提出的算法在分割准确性和鲁棒性方面优于传统的分割算法。

具体地,我们采用以下评价指标来评估分割性能:

  • Dice系数 (Dice Coefficient):

     用于衡量预测分割结果与真实分割结果的相似度,取值范围为0到1,值越大表示分割效果越好。

  • Jaccard指数 (Jaccard Index):

     又称为交并比(IoU),衡量预测分割结果与真实分割结果的交集与并集的比值,取值范围为0到1,值越大表示分割效果越好。

  • 灵敏度 (Sensitivity):

     衡量正确分割出的病变区域占所有真实病变区域的比例,也称为真阳性率(TPR)。

  • 特异性 (Specificity):

     衡量正确分割出的背景区域占所有真实背景区域的比例,也称为真阴性率(TNR)。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值