【无人机三维路径规划】基于豪猪算法CPO、蜣螂算法DBO、人工旅鼠算法ALA实现复杂山地模型下无人机路径规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室🍊

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)作为一种灵活、高效的空中作业平台,在测绘、农业、搜救、巡检等领域展现出巨大的应用潜力。然而,在复杂山地等严苛环境下,无人机面临着地形起伏剧烈、障碍物分布密集等挑战,如何安全、高效地规划出一条最优路径,是无人机应用的关键问题之一。本文将探讨基于豪猪算法(CPO)、蜣螂算法(DBO)以及人工旅鼠算法(ALA)等智能优化算法,在复杂山地模型下实现无人机三维路径规划的方法。

1. 引言

传统的无人机路径规划方法,如A*算法、Dijkstra算法等,在面对复杂环境时,计算复杂度高、容易陷入局部最优。随着人工智能的发展,基于群体智能的优化算法为解决此类问题提供了新的思路。这些算法模拟自然界生物的群体行为,通过个体间的协作和信息共享,实现全局搜索和寻优。

豪猪算法CPO、蜣螂算法DBO以及人工旅鼠算法ALA是近年来涌现出的新型智能优化算法。CPO模拟豪猪的防御机制,通过个体间的刺扎和距离调整,实现搜索空间的探索和利用;DBO模拟蜣螂的滚动、觅食和繁殖行为,具有良好的全局搜索能力和收敛速度;ALA模拟旅鼠的群体迁移行为,通过个体间的竞争和跟随,实现高效的寻优过程。

将这些算法应用于复杂山地模型下的无人机三维路径规划,旨在克服传统方法的局限性,找到一条安全、高效、低成本的飞行路径。

2. 相关工作

无人机路径规划问题一直是研究的热点。早期的研究主要集中于基于图搜索算法的路径规划,例如A*算法及其变种。这些算法虽然能够保证找到最优解,但计算复杂度较高,难以应用于大规模、复杂的环境。

近年来,基于智能优化算法的路径规划方法得到了广泛关注。例如,遗传算法(GA)通过模拟生物进化过程,搜索最优路径;粒子群优化算法(PSO)通过模拟鸟群的飞行行为,实现快速寻优;蚁群算法(ACO)通过模拟蚂蚁觅食行为,寻找最优路径。

然而,这些传统的智能优化算法在面对复杂山地环境时,仍然存在一些问题,例如容易陷入局部最优、收敛速度慢等。因此,研究者们开始探索新型智能优化算法,并将其应用于无人机路径规划。例如,有研究者将灰狼优化算法(GWO)、鲸鱼优化算法(WOA)等应用于无人机路径规划,取得了较好的效果。

3. 问题建模与路径表示

为了将复杂山地模型下的无人机路径规划问题转化为数学模型,首先需要对环境进行建模。常用的方法包括:

  • 栅格地图:

     将三维空间离散化为立方体栅格,每个栅格表示该区域是否可飞行。

  • 八叉树地图:

     采用层次结构表示空间,根据区域的复杂程度进行自适应划分,减少存储空间。

  • 三维三角网格(TIN):

     将山地表面表示为一系列三角形的集合,能够精确地描述地形起伏。

本文假设采用三维三角网格(TIN)作为环境模型。

路径表示方面,常用的方法包括:

  • 关键点法:

     将路径表示为一系列关键点的集合,无人机按照顺序依次通过这些关键点。

  • 贝塞尔曲线:

     利用贝塞尔曲线的平滑性,生成连续可微的路径。

  • B样条曲线:

     利用B样条曲线的局部控制性,方便对路径进行调整。

本文采用关键点法表示路径。假设路径由一系列关键点组成,表示为 P = {p1, p2, ..., pn},其中 pi = (xi, yi, zi) 表示第 i 个关键点的三维坐标。

4. 基于CPO、DBO、ALA的路径规划方法

接下来,我们将分别介绍基于豪猪算法CPO、蜣螂算法DBO以及人工旅鼠算法ALA的无人机路径规划方法。

4.1 基于豪猪算法CPO的路径规划

CPO算法模拟豪猪的防御机制,个体(无人机路径)通过刺扎其他个体来探索搜索空间,并通过距离调整来避免过度探索。具体步骤如下:

  1. 初始化种群:

     随机生成一批无人机路径,每条路径由一系列关键点组成。

  2. 适应度评估:

     计算每条路径的适应度值,适应度函数通常考虑路径长度、安全性(与障碍物的距离)和飞行高度等因素。

  3. 刺扎操作:

     每个个体随机选择一个邻近个体进行“刺扎”,即调整自身关键点的位置,使其更靠近被刺扎个体。

  4. 距离调整:

     计算个体与其邻近个体的距离,如果距离过近,则进行远离操作,避免过度聚集。

  5. 选择操作:

     选择适应度值较好的个体作为下一代种群。

  6. 迭代:

     重复步骤2-5,直到满足终止条件(例如达到最大迭代次数)。

4.2 基于蜣螂算法DBO的路径规划

DBO算法模拟蜣螂的滚动、觅食和繁殖行为,具有良好的全局搜索能力和收敛速度。具体步骤如下:

  1. 初始化种群:

     随机生成一批无人机路径,每条路径由一系列关键点组成。

  2. 适应度评估:

     计算每条路径的适应度值,适应度函数通常考虑路径长度、安全性(与障碍物的距离)和飞行高度等因素。

  3. 滚动蜣螂:

     模拟蜣螂滚动粪球的行为,通过改变关键点的位置,使其向着全局最优解靠近。

  4. 觅食蜣螂:

     模拟蜣螂寻找食物的行为,通过在局部范围内随机搜索,寻找更好的路径。

  5. 繁殖蜣螂:

     模拟蜣螂繁殖的行为,通过交叉和变异等操作,生成新的个体。

  6. 选择操作:

     选择适应度值较好的个体作为下一代种群。

  7. 迭代:

     重复步骤2-6,直到满足终止条件(例如达到最大迭代次数)。

4.3 基于人工旅鼠算法ALA的路径规划

ALA算法模拟旅鼠的群体迁移行为,个体通过竞争和跟随,实现高效的寻优过程。具体步骤如下:

  1. 初始化种群:

     随机生成一批无人机路径,每条路径由一系列关键点组成。

  2. 适应度评估:

     计算每条路径的适应度值,适应度函数通常考虑路径长度、安全性(与障碍物的距离)和飞行高度等因素。

  3. 竞争:

     模拟旅鼠之间的竞争行为,适应度值较高的个体可以影响周围的个体。

  4. 跟随:

     模拟旅鼠跟随领头羊的行为,个体向着适应度值最高的个体靠近。

  5. 变异:

     对个体进行变异操作,引入随机性,避免陷入局部最优。

  6. 选择操作:

     选择适应度值较好的个体作为下一代种群。

  7. 迭代:

     重复步骤2-6,直到满足终止条件(例如达到最大迭代次数)。

5. 适应度函数设计

适应度函数是评估无人机路径优劣的关键指标。一个合理的适应度函数应该能够综合考虑路径的长度、安全性、平滑性和飞行高度等因素。本文提出如下适应度函数:

 

ini

Fitness = w1 * Length + w2 * Safety + w3 * Smoothness + w4 * Altitude  

其中:

  • Length

    :路径的总长度,长度越短,适应度值越高。

  • Safety

    :路径与障碍物的最小距离,距离越大,适应度值越高。

  • Smoothness

    :路径的平滑程度,平滑度越高,适应度值越高。 可以用路径曲率或角度变化来衡量。

  • Altitude

    :路径的平均飞行高度,飞行高度越低,适应度值越高(在保证安全的前提下)。

  • w1

    w2w3w4:权重系数,用于调整各个因素的重要性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值