✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球对清洁能源需求的日益增长,波浪能作为一种蕴藏丰富且分布广泛的可再生能源,受到了广泛关注。波浪能转换装置(WEC)能够将波浪的机械能转化为电能,然而,波浪的随机性和非线性给WEC的控制带来了极大的挑战。本文旨在研究一种基于模型预测控制(MPC)的WEC控制策略,旨在优化能量捕获效率,同时降低装置的机械应力,提高其运行稳定性。通过对WEC动力学模型的建立和精确化,结合MPC的预测能力和滚动优化特性,可以有效应对波浪的不确定性,实现WEC的智能化高效运行。本文将深入探讨模型预测控制在波浪能转换领域的应用,并分析其优势与挑战,为未来波浪能技术的商业化应用提供理论支持和实践指导。
关键词: 波浪能转换装置;模型预测控制;能量捕获;滚动优化;非线性系统;
1. 引言
在全球能源危机日益严峻的背景下,开发利用可再生能源已成为各国应对气候变化和保障能源安全的战略选择。海洋蕴藏着巨大的能量,其中波浪能作为一种储量丰富、分布广泛、清洁可再生的能源,具有巨大的开发潜力。波浪能转换装置(Wave Energy Converter, WEC)是实现波浪能有效利用的关键设备,其通过将波浪的机械能转化为电能,实现能量的捕获与利用。
然而,波浪的随机性和非线性特征给WEC的控制带来了巨大的挑战。波浪的频谱复杂,难以精确预测,且WEC的动力学模型往往具有非线性特性,传统的控制方法难以满足其高效运行的需求。因此,开发一种能够适应波浪的不确定性,并能有效控制WEC的智能控制策略,是提高波浪能利用效率的关键。
模型预测控制(Model Predictive Control, MPC)是一种先进的控制算法,其核心思想是利用系统模型预测未来一段时间内的系统状态,并根据预测结果进行优化控制,以满足预设的控制目标。MPC具有预测能力和滚动优化特性,能够有效应对系统的非线性、时变性和不确定性,近年来在工业控制领域得到了广泛应用。
本文旨在研究一种基于模型预测控制的WEC控制策略,通过建立WEC的精确动力学模型,结合MPC的预测能力和滚动优化特性,实现WEC的能量捕获最大化,并降低装置的机械应力,提高其运行稳定性。本文将深入探讨模型预测控制在波浪能转换领域的应用,并分析其优势与挑战,为未来波浪能技术的商业化应用提供理论支持和实践指导。
2. 波浪能转换装置建模
精确的WEC动力学模型是设计有效控制策略的基础。WEC的动力学模型通常基于牛顿运动定律或拉格朗日方程建立,描述了WEC在波浪作用下的运动规律。模型复杂程度取决于WEC的类型和所需的精度。
2.1 WEC类型及建模方法
常见的WEC类型包括摆式、浮体式、振荡水柱式等。其中,浮体式WEC由于其结构简单、能量捕获效率较高,被广泛研究和应用。针对浮体式WEC,可以建立一阶、二阶或更高阶的动力学模型。
本文以浮体式WEC为例,介绍其建模方法。简化起见,假设浮体只在垂向运动,则其动力学方程可以表示为:
(m + a(ω)) * ä(t) + b(ω) * å(t) + c * z(t) = F_wave(t) + F_pto(t)
其中:
-
m: 浮体质量
-
a(ω): 附加质量,频率相关
-
b(ω): 阻尼系数,频率相关
-
c: 静水恢复力系数
-
z(t): 浮体位移
-
å(t): 浮体速度
-
ä(t): 浮体加速度
-
F_wave(t): 波浪激励力
-
F_pto(t): 功率吸收装置(Power Take-Off, PTO)的控制力
波浪激励力 F_wave(t) 可以通过线性波浪理论计算,也可以通过实验测量获得。附加质量 a(ω) 和阻尼系数 b(ω) 可以通过水动力学分析软件计算,也可以通过实验测量获得。
2.2 模型线性化与离散化
为了便于MPC的应用,需要对非线性动力学模型进行线性化处理。常见的线性化方法包括泰勒展开法和雅可比矩阵法。将线性化后的模型进行离散化处理,得到离散时间状态空间模型:
x(k+1) = A * x(k) + B * u(k) + w(k)
y(k) = C * x(k)
其中:
-
x(k): 系统状态向量,例如 [z(k), å(k)]^T
-
u(k): 控制输入,即 PTO 的控制力 F_pto(k)
-
y(k): 系统输出,例如浮体位移 z(k)
-
A, B, C: 状态矩阵、输入矩阵和输出矩阵
-
w(k): 系统噪声,例如未建模的波浪干扰
3. 模型预测控制策略设计
模型预测控制的核心在于利用系统模型预测未来一段时间内的系统状态,并根据预测结果进行优化控制,以满足预设的控制目标。MPC的控制过程包括预测、优化和反馈三个步骤。
3.1 预测模型
基于离散时间状态空间模型,可以预测未来 Np 个时间步的系统状态:
x(k+1|k) = A * x(k|k) + B * u(k|k)
x(k+2|k) = A * x(k+1|k) + B * u(k+1|k)
...
x(k+Np|k) = A * x(k+Np-1|k) + B * u(k+Np-1|k)
其中:
-
x(k+i|k): 在 k 时刻预测的 k+i 时刻的系统状态
-
u(k+i|k): 在 k 时刻确定的 k+i 时刻的控制输入
3.2 优化目标函数
优化目标函数旨在量化控制系统的性能指标,例如能量捕获效率、装置的机械应力等。常见的优化目标函数形式如下:
J = Σ[q * (y(k+i|k) - y_ref(k+i))^2 + r * u(k+i-1|k)^2] + p * (x(k+Np|k) - x_ref)^2
其中:
-
q, r, p: 权重系数,用于平衡各项指标
-
y(k+i|k): 在 k 时刻预测的 k+i 时刻的系统输出
-
y_ref(k+i): 在 k+i 时刻的系统输出参考值
-
x(k+Np|k): 在 k 时刻预测的 k+Np 时刻的系统状态
-
x_ref: 系统状态参考值
优化目标函数的选择需要根据具体的控制目标进行调整。例如,为了最大化能量捕获效率,可以将 PTO 功率作为优化目标的一部分。为了降低装置的机械应力,可以将控制力的大小和变化率作为惩罚项加入到目标函数中。
3.3 约束条件
为了保证系统的安全稳定运行,需要设置约束条件限制系统状态和控制输入的范围。常见的约束条件包括:
-
控制输入约束: u_min ≤ u(k) ≤ u_max
-
状态约束: x_min ≤ x(k) ≤ x_max
约束条件的设置需要根据WEC的物理特性和安全要求进行调整。
3.4 滚动优化
MPC采用滚动优化的方式进行控制。在每个控制周期,MPC根据当前系统的状态和预测模型,求解优化目标函数,得到未来 Np 个时间步的最优控制序列。然后,将最优控制序列的第一个控制输入应用到系统中,并更新系统状态。在下一个控制周期,重复上述步骤,实现滚动优化控制。
4. MPC在波浪能转换领域的应用优势与挑战
4.1 优势
- 处理非线性系统:
MPC可以处理非线性系统,通过线性化或非线性优化方法,能够有效控制WEC的非线性动力学特性。
- 应对波浪不确定性:
MPC具有预测能力,可以根据历史数据和波浪预报信息,预测未来一段时间内的波浪激励力,从而应对波浪的不确定性。
- 多目标优化:
MPC可以同时优化多个控制目标,例如能量捕获效率、装置的机械应力等,实现WEC的综合性能优化。
- 约束处理:
MPC可以显式地考虑约束条件,保证系统的安全稳定运行。
- 滚动优化:
MPC采用滚动优化方式,能够根据实际情况调整控制策略,提高控制系统的鲁棒性和适应性。
4.2 挑战
- 模型精度:
MPC的控制性能依赖于模型的精度,如果模型与实际系统存在较大偏差,则可能导致控制性能下降甚至系统失稳。因此,需要建立精确的WEC动力学模型。
- 计算复杂度:
MPC的优化过程需要求解复杂的优化问题,计算复杂度较高,尤其是在非线性MPC中。这可能限制MPC在实时性要求较高的场合的应用。
- 参数整定:
MPC的参数,例如预测时域、控制时域、权重系数等,需要根据具体的控制目标进行调整。参数整定过程复杂,需要一定的经验和技巧。
- 鲁棒性:
虽然MPC具有一定的鲁棒性,但仍然可能受到未知扰动的影响。需要研究鲁棒MPC策略,提高控制系统对未知扰动的抵抗能力。
- 在线估计:
为了提高模型的精度,需要对模型参数进行在线估计。然而,在线估计的计算复杂度较高,需要进行简化和优化。
5. 结论与展望
本文对基于模型预测控制的波浪能转换装置控制策略进行了研究。通过建立WEC的动力学模型,结合MPC的预测能力和滚动优化特性,可以有效应对波浪的不确定性,实现WEC的智能化高效运行。MPC在波浪能转换领域具有诸多优势,例如处理非线性系统、应对波浪不确定性、多目标优化等。然而,MPC也面临着一些挑战,例如模型精度、计算复杂度、参数整定等。
未来,研究方向可以包括:
- 提高模型精度:
研究更精确的WEC动力学模型,例如考虑水动力学效应、结构变形等因素。
- 降低计算复杂度:
研究简化的MPC算法,例如显式MPC、近似动态规划等,提高控制系统的实时性。
- 参数自适应整定:
研究基于机器学习的MPC参数自适应整定方法,减少人工干预。
- 鲁棒MPC:
研究鲁棒MPC策略,提高控制系统对未知扰动的抵抗能力。
- 在线估计:
研究高效的在线估计方法,提高模型的精度和适应性。
⛳️ 运行结果
🔗 参考文献
[1] 代高富,符金伟,周胜,等.基于模型预测控制的 MMC-HVDC 系统控制策略研究[J].电力系统保护与控制, 2016.
[2] 章勤.PWM整流器模型预测电流控制和LCL滤波技术研究[D].北方工业大学,2015.
[3] 郑峰,苏明鸿,陈静,等.基于改进模型预测的并网变换器自适应虚拟惯性控制策略研究[J].电力系统保护与控制, 2024, 52(13):35-46.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇