【状态估计】基于不变扩展卡尔曼滤波器的传感器融合状态估计附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

状态估计作为机器人导航、自动驾驶、增强现实等诸多领域的核心技术,旨在从一系列噪声观测中准确、可靠地估计系统的状态变量。面对日益复杂的应用场景,单一传感器的局限性愈发明显,如精度不足、易受环境干扰、以及在某些特定条件下失效等。因此,传感器融合应运而生,它通过有效地整合来自多个传感器的信息,能够显著提升状态估计的精度、鲁棒性和可靠性。然而,传感器融合面临诸多挑战,例如数据异构、异步采样、以及传感器误差建模等。传统的扩展卡尔曼滤波器(Extended Kalman Filter, EKF)作为一种应用广泛的非线性状态估计算法,在传感器融合领域发挥着重要作用。然而,EKF线性化误差累积以及对初始状态的敏感性等问题限制了其在复杂场景下的性能。近年来,基于不变性的扩展卡尔曼滤波器(Invariant Extended Kalman Filter, Invariant EKF, InEKF)凭借其独特的理论优势和卓越的性能,逐渐成为状态估计领域的研究热点。本文将深入探讨基于InEKF的传感器融合状态估计方法,着重阐述其核心思想、优势、适用场景以及潜在挑战。

一、传统EKF及其局限性

EKF通过将非线性状态转移方程和观测方程线性化,然后应用标准卡尔曼滤波框架进行状态估计。具体而言,它利用泰勒级数展开将非线性函数近似为线性函数,并在当前估计状态周围进行线性化。虽然这种方法在计算上相对高效,但在处理强非线性系统时存在显著的局限性:

  1. 线性化误差累积:

     EKF依赖于在每个时间步进行线性化近似,而每一次线性化都会引入误差。随着时间的推移,这些误差会累积,导致估计精度下降甚至发散。尤其是在状态空间中高度非线性的区域,线性化近似的偏差更为显著。

  2. 对初始状态敏感:

     由于EKF在当前估计状态周围进行线性化,因此其性能高度依赖于初始状态的准确性。如果初始状态误差较大,可能会导致线性化点偏离真实状态,从而影响滤波器的收敛性和精度。

  3. 坐标系依赖性:

     EKF的性能受到状态变量坐标系选择的影响。在不同的坐标系下,状态转移方程和观测方程的非线性程度可能不同,从而影响线性化近似的精度和滤波器的性能。这对于某些状态空间,例如位姿估计中的旋转矩阵或四元数,尤为重要,因为这些变量的坐标系变换会显著改变方程的形式。

  4. 雅可比矩阵计算复杂:

     EKF需要计算状态转移方程和观测方程的雅可比矩阵,这在复杂系统中可能是一项计算密集型任务,尤其是在状态维度较高的情况下。此外,雅可比矩阵计算的准确性也会直接影响滤波器的性能。

二、不变扩展卡尔曼滤波器(InEKF)的理论基础

InEKF的核心思想是利用系统的不变性来设计滤波器,从而减轻EKF的线性化误差和对初始状态的敏感性。不变性是指在某种变换下,系统的某些属性保持不变。例如,在移动机器人的位姿估计中,平移和旋转操作不会改变机器人的内部状态。InEKF将状态变量分解为两部分:标称状态和误差状态。标称状态描述系统的主要状态,而误差状态则描述标称状态的误差。InEKF的关键在于利用系统的不变性,在误差状态空间中设计滤波器,从而避免直接在线性化非线性状态空间,降低线性化误差的影响。

InEKF通常基于右不变误差(Right-Invariant Error)或左不变误差(Left-Invariant Error)进行设计。右不变误差定义为标称状态与真实状态的差,通过右乘一个群元素进行表示,而左不变误差则通过左乘群元素进行表示。选择合适的误差定义取决于系统的特性和应用场景。与EKF不同,InEKF在线性化过程中,利用李群和李代数的工具,将非线性状态空间转化为李代数空间,并在李代数空间中进行线性化和滤波。这种方法能够更准确地描述误差的演化过程,并保证估计的一致性。

三、InEKF在传感器融合中的优势

InEKF在传感器融合中展现出显著的优势:

  1. 更高的精度和鲁棒性:

     通过在李代数空间中进行线性化和滤波,InEKF能够更好地处理非线性系统,并降低线性化误差的影响。这使得InEKF在处理强非线性状态估计问题时,能够获得更高的精度和鲁棒性。

  2. 对初始状态不敏感:

     InEKF的误差状态是相对于标称状态定义的,因此其性能对初始状态的敏感性较低。即使初始状态误差较大,InEKF也能够快速收敛到正确的估计状态。

  3. 坐标系无关性:

     InEKF利用系统的不变性,使得其性能不受状态变量坐标系选择的影响。这意味着可以自由选择合适的坐标系,而无需担心坐标系变换对滤波器性能的影响。

  4. 更容易进行误差分析:

     InEKF的误差状态空间是线性的,因此更容易进行误差分析和理论推导。这有助于理解滤波器的性能,并进行参数调整和优化。

  5. 适用于多种传感器融合场景:

     InEKF可以应用于多种传感器融合场景,例如视觉-惯性里程计(Visual-Inertial Odometry, VIO)、激光-惯性里程计(LiDAR-Inertial Odometry, LIO)等。

四、基于InEKF的传感器融合状态估计框架

基于InEKF的传感器融合状态估计框架通常包含以下几个关键步骤:

  1. 状态空间定义:

     首先需要定义系统的状态空间,包括标称状态和误差状态。标称状态描述系统的主要状态,例如位姿、速度、加速度等,而误差状态则描述标称状态的误差。

  2. 系统动力学模型和观测模型建立:

     建立系统的动力学模型和观测模型是关键。动力学模型描述状态变量随时间的变化规律,而观测模型描述传感器测量值与状态变量之间的关系。这些模型必须尽可能地准确,才能保证滤波器的性能。

  3. 李群和李代数表示:

     选择合适的李群和李代数来描述系统的状态空间和误差状态空间。例如,位姿通常使用特殊欧几里得群SE(3)或特殊正交群SO(3)来表示,而其对应的李代数则用于表示角速度和线速度。

  4. 误差状态动力学模型和观测模型线性化:

     将误差状态的动力学模型和观测模型在李代数空间中进行线性化,得到线性化的状态转移矩阵和观测矩阵。

  5. InEKF迭代更新:

     应用标准卡尔曼滤波框架进行状态估计,包括预测和更新两个步骤。在预测步骤中,利用状态转移矩阵预测状态变量的下一时刻值和协方差矩阵。在更新步骤中,利用观测矩阵和传感器测量值更新状态变量和协方差矩阵。

  6. 状态更新和误差重置:

     在更新步骤之后,需要将误差状态更新到标称状态,并将误差状态重置为零。这是InEKF的关键步骤,能够保证误差状态始终围绕零点附近波动,从而提高滤波器的精度和鲁棒性。

五、InEKF在视觉-惯性里程计(VIO)中的应用

视觉-惯性里程计(VIO)是一种利用相机和惯性测量单元(Inertial Measurement Unit, IMU)进行状态估计的技术。VIO在机器人导航、增强现实等领域具有广泛的应用前景。InEKF在VIO中可以有效地融合来自相机和IMU的信息,从而提高位姿估计的精度和鲁棒性。

在基于InEKF的VIO系统中,状态变量通常包括位姿(位置和姿态)、速度、加速度计偏置和陀螺仪偏置。IMU测量值(加速度和角速度)可以用于预测状态变量的下一时刻值,而相机测量值(例如图像特征点的位置)可以用于更新状态变量。通过融合来自相机和IMU的信息,InEKF能够克服单一传感器的局限性,例如相机的光照敏感性和IMU的漂移误差。

六、InEKF面临的挑战与未来发展方向

尽管InEKF在传感器融合领域展现出诸多优势,但也面临一些挑战:

  1. 模型精度要求高:

     InEKF对系统动力学模型和观测模型的精度要求较高。如果模型不够准确,可能会导致滤波器性能下降甚至发散。

  2. 计算复杂度较高:

     InEKF需要进行李群和李代数的运算,这在计算上相对复杂,尤其是在状态维度较高的情况下。

  3. 参数调整困难:

     InEKF的参数调整相对困难,需要根据具体应用场景进行精细的调整,才能获得最佳性能。

  4. 实时性要求:

     在实时应用中,InEKF需要满足实时性要求,因此需要进行算法优化和硬件加速。

未来的发展方向主要集中在以下几个方面:

  1. 自适应模型学习:

     通过机器学习的方法,自动学习系统动力学模型和观测模型,从而提高滤波器的精度和鲁棒性。

  2. 计算加速:

     通过算法优化、并行计算和硬件加速等方法,降低InEKF的计算复杂度,提高实时性。

  3. 鲁棒性增强:

     通过引入鲁棒估计方法,例如M估计和RANSAC,来提高InEKF对异常值的鲁棒性。

  4. 与其他滤波算法融合:

     将InEKF与其他滤波算法,例如粒子滤波器和信息滤波器,进行融合,从而获得更好的性能。

  5. 非高斯噪声处理:

     研究适用于非高斯噪声的InEKF变体,例如基于最大相关熵的InEKF,从而提高滤波器在复杂环境下的性能。

七、结论

基于不变扩展卡尔曼滤波器(InEKF)的传感器融合状态估计方法是一种具有 promising 前景的技术。通过利用系统的不变性,InEKF能够有效地处理非线性系统,降低线性化误差的影响,并提高状态估计的精度和鲁棒性。虽然InEKF仍然面临一些挑战,但随着技术的不断发展,相信InEKF将在机器人导航、自动驾驶、增强现实等领域发挥越来越重要的作用。未来的研究方向将集中在模型精度提升、计算加速、鲁棒性增强以及与其他滤波算法融合等方面,以进一步拓展InEKF的应用范围和提升其性能。

⛳️ 运行结果

🔗 参考文献

[1] 宗长富,潘钊,胡丹,等.基于扩展卡尔曼滤波的信息融合技术在车辆状态估计中的应用[J].机械工程学报, 2009, 45(10):6.DOI:10.3901/JME.2009.10.272.

[2] 袁闪闪,刘和平,杨飞.基于扩展卡尔曼滤波的LiFePO4电池荷电状态估计[J].电源技术, 2012, 36(3):3.DOI:10.3969/j.issn.1002-087X.2012.03.010.

[3] 罗贞.基于卡尔曼滤波器的系统状态估计和故障检测[D].华中科技大学[2025-03-21].DOI:10.7666/d.D409309.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值