【CNN-GRU预测】基于卷积神经网络-门控循环单元的单维时间序列预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列预测在诸多领域扮演着至关重要的角色,例如金融预测、交通流量预测、气象预测等等。 传统的统计方法,如自回归移动平均模型(ARMA)及其变体,在处理线性时间序列方面表现出色。 然而,现实世界中时间序列往往具有非线性、非平稳的特性,传统的线性模型难以捕捉其复杂关系。 深度学习,尤其是循环神经网络(RNN),凭借其强大的非线性拟合能力和对时序信息的记忆能力,在时间序列预测领域取得了显著进展。 然而,传统的RNN存在梯度消失和梯度爆炸的问题,导致其在处理长序列时性能下降。 长短期记忆网络(LSTM)和门控循环单元(GRU)作为RNN的变体,通过引入门控机制有效缓解了这些问题,并成为时间序列预测领域的主流选择。

虽然LSTM和GRU在处理长序列方面表现优异,但它们通常直接处理原始时间序列数据,忽略了序列中的局部特征。 卷积神经网络(CNN)擅长于提取局部特征,在图像识别、语音识别等领域取得了卓越的成就。 将CNN与GRU相结合,利用CNN提取时间序列的局部特征,再利用GRU学习序列的长期依赖关系,能够有效地提高预测精度。 本文旨在探讨基于卷积神经网络-门控循环单元(CNN-GRU)的单维时间序列预测方法,深入研究其原理、优势和应用。

一、卷积神经网络(CNN)在时间序列预测中的应用

传统的CNN主要应用于二维图像数据的处理,其卷积核在图像上滑动,提取图像的局部特征。 然而,CNN同样适用于一维时间序列数据的处理。 在时间序列预测中,我们可以将一维时间序列视为一个特殊的“图像”,利用卷积核对序列进行卷积操作,提取序列中的局部模式。

具体来说,CNN在时间序列预测中的应用主要体现在以下几个方面:

  • 局部特征提取:

     卷积操作能够提取时间序列中相邻数据点之间的关系,例如趋势、周期性波动等。 通过调整卷积核的大小和数量,可以提取不同尺度的局部特征。

  • 降低数据维度:

     通过池化操作,可以降低数据的维度,减少模型的计算复杂度,并提高模型的泛化能力。

  • 平移不变性:

     CNN具有平移不变性,这意味着即使时间序列发生平移,模型仍然能够识别出相同的局部模式。 这一特性对于处理非平稳时间序列尤为重要。

然而,单独使用CNN进行时间序列预测也存在一些局限性。 CNN主要关注局部特征,忽略了序列的长期依赖关系,因此在处理长序列时性能有限。

二、门控循环单元(GRU)的原理与优势

GRU是LSTM的一种变体,其结构比LSTM更加简单,但性能却与LSTM相当。 GRU通过引入更新门(Update Gate)和重置门(Reset Gate)来控制信息的流动,有效地缓解了梯度消失和梯度爆炸的问题。

  • 更新门(Update Gate):

     控制前一时刻的隐藏状态对当前时刻的影响程度。 更新门的值越大,表示前一时刻的隐藏状态对当前时刻的影响越大。

  • 重置门(Reset Gate):

     控制前一时刻的隐藏状态对计算候选隐藏状态的影响程度。 重置门的值越小,表示前一时刻的隐藏状态对计算候选隐藏状态的影响越小。

GRU的优点主要体现在以下几个方面:

  • 缓解梯度问题:

     门控机制能够有效地控制信息的流动,从而缓解梯度消失和梯度爆炸的问题。

  • 记忆长期依赖关系:

     GRU能够有效地记忆时间序列的长期依赖关系,从而提高预测精度。

  • 结构简单,计算效率高:

     与LSTM相比,GRU的结构更加简单,参数更少,计算效率更高。

然而,GRU在处理时间序列时,通常直接处理原始数据,缺乏对局部特征的提取能力。

三、基于CNN-GRU的单维时间序列预测模型

为了克服CNN和GRU各自的局限性,本文提出了基于CNN-GRU的单维时间序列预测模型。 该模型首先利用CNN提取时间序列的局部特征,然后将提取到的特征输入到GRU中,学习序列的长期依赖关系,最后利用全连接层进行预测。

模型结构如下:

  1. 输入层:

     接收单维时间序列数据。

  2. 卷积层(CNN):

     利用卷积核对时间序列进行卷积操作,提取序列的局部特征。 可以使用多个卷积层,并采用不同的卷积核大小和数量,以提取不同尺度的局部特征。

  3. 池化层(Pooling):

     对卷积层提取的特征进行池化操作,降低数据维度,减少模型的计算复杂度,并提高模型的泛化能力。

  4. 门控循环单元层(GRU):

     将池化层输出的特征输入到GRU中,学习序列的长期依赖关系。 可以使用多层GRU,以提取更复杂的时序信息。

  5. 全连接层(Fully Connected):

     将GRU层输出的隐藏状态输入到全连接层中,进行预测。

  6. 输出层:

     输出预测结果。

模型训练过程:

  1. 数据预处理:

     对时间序列数据进行预处理,例如归一化、标准化等,以提高模型的训练效率和预测精度。

  2. 数据集划分:

     将时间序列数据划分为训练集、验证集和测试集。

  3. 模型初始化:

     初始化CNN-GRU模型的参数。

  4. 前向传播:

     将训练集数据输入到模型中,计算预测结果。

  5. 损失函数计算:

     计算预测结果与真实值之间的损失函数,例如均方误差(MSE)、平均绝对误差(MAE)等。

  6. 反向传播:

     利用反向传播算法计算模型参数的梯度。

  7. 参数更新:

     利用优化算法(例如Adam、RMSprop等)更新模型参数。

  8. 模型评估:

     在验证集上评估模型的性能,调整模型参数,以提高模型的泛化能力。

  9. 模型测试:

     在测试集上测试模型的性能,评估模型的预测精度。

四、实验结果与分析

为了验证CNN-GRU模型的性能,本文选取了多个真实世界的时间序列数据集进行实验,并将CNN-GRU模型与其他模型进行比较,例如ARIMA模型、LSTM模型、单独的CNN模型等。 实验结果表明,CNN-GRU模型在大多数情况下优于其他模型,能够有效地提高时间序列预测的精度。

例如,在电力负荷预测中,CNN-GRU模型能够有效地捕捉电力负荷的周期性波动和趋势变化,从而提高了预测精度。 在股票价格预测中,CNN-GRU模型能够有效地提取股票价格的局部特征和长期依赖关系,从而提高了预测精度。

五、结论与展望

本文研究了基于CNN-GRU的单维时间序列预测方法,并进行了实验验证。 实验结果表明,CNN-GRU模型能够有效地提高时间序列预测的精度。 CNN-GRU模型结合了CNN的局部特征提取能力和GRU的长期依赖关系学习能力,能够有效地处理复杂的时间序列数据。

未来研究方向可以包括以下几个方面:

  • 模型优化:

     可以进一步优化CNN-GRU模型的结构,例如引入注意力机制、残差连接等,以提高模型的性能。

  • 多维时间序列预测:

     可以将CNN-GRU模型应用于多维时间序列预测,例如同时预测多个相关的时间序列。

  • 更广泛的应用领域:

     可以将CNN-GRU模型应用于更广泛的应用领域,例如医疗诊断、工业控制等。

  • 解释性研究:

     可以研究如何提高CNN-GRU模型的可解释性,例如利用可视化技术展示模型提取的特征。

⛳️ 运行结果

🔗 参考文献

[1] 任鑫,王一妹,王华,等.基于改进卷积-门控网络及Informer的两类中长期风电功率预测方法[J].现代电力, 2023(9).

[2] 符振涛,李丽敏,王莲霞,等.基于时间序列与CNN-GRU的滑坡位移预测模型研究[J].人民珠江, 2024(002):045.DOI:10.3969/j.issn.1001-9235.2024.02.001.

[3] 赵心睿,刘曾.基于卷积门控循环网络的X波段雷达预测有义波高研究[C]//第二十一届中国海洋(岸)工程学术讨论会论文集(下).2024.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值