LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架

1 介绍

在本篇文章中,将介绍如何使用Transformer和LSTM模型进行时间序列预测。这两种模型分别擅长处理序列数据和捕捉时间序列中的长短期依赖关系。我们将结合这两种模型的优势,构建一个强大的预测模型。单输入单输出预测,适合风电预测,功率预测,负荷预测等等。

2 方法

Transformer模型最初用于自然语言处理任务,但其强大的序列建模能力也适用于时间序列预测。在我们的模型中,我们使用了Transformer编码器来提取输入序列中的特征。Transformer的核心优势在于其自注意力机制,能够捕捉序列中不同位置之间的依赖关系。

由于Transformer本身不具备处理序列位置信息的能力,我们使用了位置编码来为每个输入数据点添加位置信息。这一过程涉及到对每个位置应用正弦和余弦函数,从而使模型能够区分序列中的不同位置。

长短期记忆(LSTM)网络是一种特殊类型的循环神经网络,能够有效地学习时间序列中的长期依赖关系。在我们的模型中,LSTM解码器负责根据Transformer编码器提取的特征进行预测。LSTM能够处理输入序列中的短期依赖,并通过注意力机制进一步增强对重要信息的关注。
3 结果

模型训练过程包括前向传播和反向传播。首先,输入序列通过Transformer编码器提取特征,然后传递给LSTM解码器进行预测。在训练过程中,我们使用均方误差(MSE)作为损失

### 使用LSTMTransformer进行时间序列预测 #### LSTM 时间序列预测方法 对于时间序列预测LSTM(长短期记忆网络)是一种特别有效的工具。这种类型的神经网络能够学习长期依赖关系,在处理具有时间动态特性的数据方面表现出色。 为了构建一个用于时间序列预测LSTM模型,首先需要准备并预处理好输入的数据集。这包括但不限于读取原始数据、执行归一化操作以便于加快训练速度,并将这些数值转换成适合馈入到LSTM层的形式——即创建出一系列连续的时间窗口作为特征向量[^1]。 下面是一个简的Python实现例子: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM from sklearn.preprocessing import MinMaxScaler def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return np.array(dataX), np.array(dataY) # 加载并预处理数据... scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(raw_data) train_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) ``` 这段代码展示了如何建立一个基础版本的LSTM模型来进行步向前预测。 #### Transformer 时间序列预测方法 不同于传统的RNN及其变体如LSTMTransformers依靠自注意力机制来捕捉长时间跨度内的模式。这种方法允许模型一次性查看整个序列而不是逐个元素地顺序处理它们;因此非常适合那些存在复杂交互作用的任务场景。 当应用Transformer做时序预测时,可以考虑采用如下策略:先将每一步的所有维度组合起来形成一个多维token表示,再利用多头自注意力建立起各时刻间的联系[^4]。 这里给出一段简化版的PyTorch风格伪代码用来说明这一过程: ```python import torch.nn as nn class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = ... # 计算位置编码矩阵 self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): x = x + self.pe[:, :x.size(1)] return x class TimeSeriesTransformer(nn.Module): def __init__(self, feature_size=8, num_layers=3, dropout=0.1): super(TimeSeriesTransformer, self).__init__() self.model_type = 'Time Series Prediction' self.src_mask = None self.pos_encoder = PositionalEncoding(feature_size) self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=8, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers) self.decoder = nn.Linear(feature_size, 1) self.init_weights() def init_weights(self): ... def forward(self, src): ... output = self.transformer_encoder(src.permute(1, 0, 2)) output = self.decoder(output).squeeze(-1)[-1].unsqueeze(dim=-1) return output # 数据预处理同上... transformer_model = TimeSeriesTransformer().to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(transformer_model.parameters(), lr=lr) for epoch in range(num_epochs): transformer_model.train() ... ``` 此段代码提供了一个基本框架,实际部署时可能还需进一步优化调整以适应特定应用场景的需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值