基于Tent混沌生物地理学的优化(CBBO)算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

优化问题作为数学规划的核心分支,在科学研究、工程设计、经济管理以及日常生活等诸多领域扮演着举足轻重的角色。随着现实世界问题复杂度的不断提升,传统优化方法往往难以在可接受的时间内找到高质量的解。受自然界生物进化、物理过程以及群体智能等现象的启发,各种元启发式算法应运而生,并在解决复杂优化问题方面展现出了强大的能力。其中,生物地理学优化(Biogeography-Based Optimization,简称 BBO)算法作为一种新兴的基于生物地理学模型的优化算法,近年来受到了广泛关注。BBO 算法模拟了物种在不同栖息地之间的迁移、扩散、栖息以及灭绝等过程,并通过栖息地适宜度指数(Habitat Suitability Index,简称 HSI)来评估解的优劣,从而实现对解空间的探索与开发。

然而,如同大多数元启发式算法一样,标准 BBO 算法也面临着一些挑战,例如收敛速度较慢、容易陷入局部最优以及对初始解的依赖性较强等问题。为了克服这些不足,研究者们不断探索对 BBO 算法进行改进和优化。混沌理论作为一种研究非线性动力系统的分支,以其特有的遍历性、随机性和对初值的敏感性等特性,被广泛应用于优化算法中,以增强算法的全局搜索能力和跳出局部最优的能力。基于此,本文将重点探讨一种融合 Tent 混沌映射的生物地理学优化算法,即 Tent 混沌生物地理学优化(Chaos Biogeography-Based Optimization based on Tent Map,简称 CBBO)算法,并对其原理、特性及其应用进行深入分析。

生物地理学优化 (BBO) 算法原理回顾

在深入探讨 CBBO 算法之前,有必要回顾一下标准 BBO 算法的基本原理。BBO 算法模拟了生物地理学中的物种迁移模型,其中每个栖息地(Habitat)代表一个潜在的解,栖息地的特征(Features)对应于解的各个维度变量。栖息地的 HSI 值反映了该栖息地支持物种生存和繁衍的能力,在优化问题中,HSI 值通常与目标函数的优劣程度直接相关。

BBO 算法主要包含以下两个核心操作:

  1. 迁移 (Migration): 模拟物种在不同栖息地之间的迁入和迁出过程。每个栖息地根据其 HSI 值拥有相应的迁出率(Emigration Rate,简称 E)和迁入率(Immigration Rate,简称 I)。高 HSI 的栖息地倾向于迁出物种,而低 HSI 的栖息地倾向于迁入物种。在优化过程中,高 HSI 的解(优质解)倾向于将其特征(变量值)迁移到低 HSI 的解(劣质解)中,从而实现信息的交流和优质解的传播。迁移操作通过概率选择的方式进行,对于每个栖息地的每个特征维度,以迁入率 I 的概率从其他栖息地(根据其迁出率 E 进行概率选择)接收该维度的特征值。

  2. 变异 (Mutation): 模拟物种基因突变的过程。变异操作为算法引入随机性,帮助算法跳出局部最优。每个栖息地以一定的变异率(Mutation Rate)发生变异,即对其部分特征维度进行随机改变。变异率通常与栖息地的 HSI 值相关,HSI 值较低的栖息地往往拥有较高的变异率,以鼓励其探索新的解空间。

BBO 算法通过不断重复迁移和变异操作,并结合适者生存的原则(高 HSI 的解更有可能在种群中保留),逐步演化出更优的解,最终收敛到全局最优或接近全局最优的解。

Tent 混沌映射及其在优化中的应用

混沌(Chaos)是指发生在确定性系统中,貌似随机的、对初始条件敏感的运动。混沌系统具有以下几个重要的特性:

  1. 遍历性 (Ergodicity):

     混沌系统在状态空间中可以遍历所有的点,这意味着在优化中,混沌变量可以有效地探索整个解空间,提高全局搜索能力。

  2. 随机性 (Randomness):

     混沌系统的轨迹具有随机性,可以为优化算法引入非确定性,帮助算法避免陷入局部最优。

  3. 对初值敏感性 (Sensitivity to Initial Conditions):

     微小的初始差异会导致混沌系统产生巨大的长期差异,这使得混沌系统在搜索过程中能够迅速分散到不同的区域。

将混沌映射应用于优化算法中,通常有以下几种方式:

  1. 初始化种群:

     利用混沌序列生成初始解,可以使初始种群更均匀地分布在解空间中,提高算法的搜索效率。

  2. 混沌扰动:

     在算法的迭代过程中,利用混沌变量对当前解进行扰动,增加算法的探索能力,帮助跳出局部最优。

  3. 参数控制:

     利用混沌序列动态调整算法的参数,使其能够根据搜索过程的进展自适应地改变行为。

Tent 混沌生物地理学优化 (CBBO) 算法

CBBO 算法是在标准 BBO 算法的基础上,引入 Tent 混沌映射来增强算法的性能。本文提出的 CBBO 算法主要在以下两个方面利用 Tent 混沌映射:

  1. 混沌初始化种群: 在算法开始时,利用 Tent 混沌序列生成初始的栖息地种群。具体的做法是,为每个栖息地的每个维度变量生成一个在之间的 Tent 混沌序列值,然后将其映射到对应变量的取值范围内。这种混沌初始化方式可以使初始解更均匀地分布在整个搜索空间中,从而提高算法的全局搜索能力,避免过早收敛。

  2. 混沌变异策略: 在标准 BBO 算法的变异操作中,引入 Tent 混沌扰动。对于每个栖息地,根据其变异率决定是否进行变异。如果进行变异,则对被选中的变异维度,不再进行简单的随机改变,而是利用 Tent 混沌序列生成一个扰动量,并将其加到原变量值上,然后进行边界处理。

CBBO 算法的具体步骤可以总结如下:

  1. 参数设置:

     设置算法的各项参数,包括种群大小(栖息地数量)、最大迭代次数、迁移率和变异率相关的参数(通常与 HSI 值相关)、Tent 混沌映射的控制参数(通常设置为 μ=2μ=2)、混沌变异的缩放因子 αα 等。

  2. 混沌初始化:

     利用 Tent 混沌序列生成初始的栖息地种群,并计算每个栖息地的 HSI 值(即目标函数值)。

  3. 循环迭代:

     在达到最大迭代次数之前,重复以下步骤:
    a.计算迁出率和迁入率:根据每个栖息地的 HSI 值,计算其对应的迁出率和迁入率。通常,高 HSI 的栖息地拥有高迁出率和低迁入率,反之亦然。
    b.迁移操作:对于每个栖息地,以其迁入率的概率,根据其他栖息地的迁出率进行选择,并从选定的栖息地接收特征。
    c.变异操作:对于每个栖息地,根据其变异率,利用 Tent 混沌扰动对其部分特征进行变异。
    d.边界处理:对经过迁移和变异操作后超出变量取值范围的特征进行边界处理(例如截断或反射)。
    e.更新 HSI:计算新生成的栖息地的 HSI 值。
    f.选择操作: 通常采用精英保留策略,保留当前种群中最优的解,以保证算法的收敛性。

  4. 输出结果:

     经过最大迭代次数后,输出种群中最优的解作为优化结果。

CBBO 算法的优势与特性

相较于标准 BBO 算法,CBBO 算法凭借 Tent 混沌映射的引入,展现出以下优势与特性:

  1. 增强全局搜索能力:

     混沌初始化使得初始种群更均匀地分布在解空间中,为算法的全局搜索奠定了良好基础。混沌变异策略则避免了变异操作的盲目随机性,能够更有效地探索新的区域,提高算法跳出局部最优的能力。

  2. 提高收敛速度和精度:

     混沌的遍历性使得算法能够更全面地探索解空间,更容易找到全局最优解,从而提高收敛速度和精度。

  3. 降低对初值的依赖性:

     混沌初始化降低了算法对特定初始解的依赖,使得算法的性能更加稳定。

  4. 更强的鲁棒性:

     混沌特性为算法引入了更多的随机性,使得算法在处理复杂、多峰值的优化问题时具有更强的鲁棒性。

应用与展望

CBBO 算法作为一种改进的生物地理学优化算法,在理论上具有较好的性能,适用于解决各种复杂的优化问题,包括:

  • 连续函数优化:

     可以用于寻找各种连续多峰函数的全局最优解。

  • 组合优化问题:

     可以通过适当的编码方式,应用于旅行商问题、背包问题等组合优化问题。

  • 工程优化设计:

     可以应用于各种工程设计问题,例如结构优化、参数优化等。

  • 机器学习参数优化:

     可以用于优化机器学习模型的超参数。

然而,CBBO 算法也并非完美无缺,仍然存在一些值得进一步研究和改进的方向:

  • 混沌映射的选择与参数优化:

     除了 Tent 映射,还可以尝试其他混沌映射,并对混沌映射的参数进行自适应调整,以获得更好的性能。

  • 迁移和变异策略的进一步改进:

     可以探索更复杂的迁移和变异策略,例如引入协同迁移、自适应变异率等,以进一步提高算法的搜索效率和精度。

  • 多目标优化:

     将 CBBO 算法扩展到多目标优化领域,解决具有多个相互冲突目标的优化问题。

  • 与其他算法的融合:

     将 CBBO 算法与其他优秀的元启发式算法(如遗传算法、粒子群优化算法等)进行融合,形成混合优化算法,以结合不同算法的优势。

  • 理论分析:

     对 CBBO 算法的收敛性、复杂度等进行更深入的理论分析。

结论

本文详细探讨了基于 Tent 混沌生物地理学的优化(CBBO)算法。通过将 Tent 混沌映射引入标准 BBO 算法的初始化和变异过程中,CBBO 算法有效地增强了算法的全局搜索能力、跳出局部最优的能力,提高了收敛速度和精度,并降低了对初值的依赖性。CBBO 算法作为一种有潜力的改进型元启发式算法,在解决各种复杂优化问题方面展现出了良好的应用前景。未来的研究可以进一步探索混沌映射的选择与参数优化、迁移和变异策略的改进、多目标优化以及与其他算法的融合等方面,以进一步提升 CBBO 算法的性能和应用范围。通过持续的研究和改进,基于混沌理论的生物地理学优化算法有望在解决日益复杂的现实世界优化问题中发挥更重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 汤安迪,韩统,徐登武,等.混沌精英哈里斯鹰优化算法[J].计算机应用, 2021, 41(8):2265-2272.DOI:10.11772/j.issn.1001-9081.2020101610.

[2] 祝云龙,姜加虎,黄群,等.大通湖及东洞庭湖区生物体重金属的水平及其生态评价[J].湖泊科学, 2007, 19(6):8.DOI:10.3321/j.issn:1003-5427.2007.06.011.

[3] 李旭东.基于元启发式算法的医学数据神经网络分类方法研究[D].辽宁科技大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值