【MPC】模型预测控制 (MPC)之动态矩阵控制研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代工业控制领域,随着生产过程的日益复杂化、规模化以及对产品质量和效率要求的不断提高,传统的PID控制策略已逐渐暴露出其局限性。多输入多输出(MIMO)系统、强耦合、大时延、非线性等特性,使得精确、鲁棒的控制成为一项挑战。在此背景下,模型预测控制(MPC)作为一种先进的控制策略应运而生,并因其独特的优势在工业界得到了广泛应用。MPC的核心思想在于利用过程的动态模型对系统未来一段时间的行为进行预测,并在此基础上求解一个优化问题,以确定当前时刻的最佳控制输入。动态矩阵控制(Dynamic Matrix Control,DMC)作为最早成功应用于工业过程的MPC算法之一,以其直观的原理、易于理解和实现等特点,在石化、电力、冶金等众多领域取得了显著成效。本文旨在深入研究模型预测控制框架下的动态矩阵控制,对其基本原理、建模方法、优化问题求解以及应用与发展进行探讨。

1. 模型预测控制(MPC)概述

模型预测控制(MPC),又称滚动时域控制或预测控制,是一类基于模型的先进控制方法。其核心思想可以概括为以下几个步骤:

  • 建模 (Modeling):

     建立被控对象的数学模型,用于预测系统未来的动态行为。模型的形式可以是多种多样的,如状态空间模型、传递函数模型、脉冲响应模型、阶跃响应模型等。

  • 预测 (Prediction):

     利用建立的模型,在已知当前系统状态和未来一段时间内的控制输入的情况下,预测系统在未来一段时间内的输出轨迹。预测的时间范围称为预测时域(Prediction Horizon,PP)。

  • 优化 (Optimization):

     在预测时域内,根据预设的控制目标(如跟踪设定值、抑制扰动、满足约束条件等),建立一个优化问题。优化问题通常是寻找在预测时域内的控制输入序列,使得某个性能指标(如二次型成本函数)最小化,同时满足各种操作约束。

  • 滚动 (Receding Horizon):

     求解优化问题后,只将计算出的最优控制输入序列的第一个元素施加到被控对象上。在下一个控制周期,系统状态发生变化,重新进行建模(如果需要)、预测和优化,形成一个滚动优化的过程。

MPC之所以能够有效处理复杂系统,在于其能够显式地考虑系统约束条件,并在控制决策中融入对系统未来行为的预测,从而实现更优的控制性能和鲁棒性。

2. 动态矩阵控制(DMC)原理

动态矩阵控制(DMC)是MPC的一种具体实现形式,尤其适用于具有大时延和强耦合特性的工业过程。DMC的核心在于利用系统的阶跃响应模型来进行预测和控制决策。

2.1 阶跃响应模型的建立

对于线性定常系统,其输出对于输入的阶跃变化的响应可以用阶跃响应曲线来描述。假设系统有 mm 个输入和 pp 个输出,则每个输入对每个输出都有一个对应的阶跃响应曲线。为了方便数学处理,DMC 通常使用离散时间模型。将系统的输入和输出采样,并假设输入在采样间隔内保持不变,则系统的阶跃响应可以用一组离散的阶跃响应系数来表示。

2.2 基于阶跃响应模型的预测

DMC 利用叠加原理,假设系统的总输出变化是由各个输入的阶跃变化引起的输出变化线性叠加而成。这部分通常可以利用历史数据和阶跃响应模型进行计算,并被视为当前时刻的基线预测,或者通过测量当前输出并假设未来没有新的输入变化来预测未来的输出。更精确的预测通常会将过去输入变化的影响吸收到一个基线预测中,并考虑已知扰动的影响。

2.3 优化问题求解

DMC 的控制目标通常是使得预测时域内的输出尽可能地跟踪设定的参考轨迹,同时限制控制输入的变化量,以避免剧烈的控制动作。这可以通过求解一个二次型优化问题来实现。

在实际应用中,通常还需要考虑控制输入和输出的约束条件,例如输入幅度限制、变化率限制,以及输出的安全裕度等。这些约束条件可以以不等式的形式加入到优化问题中,从而将二次规划问题转化为一个带约束的二次规划问题,需要使用专门的优化算法进行求解。

3. DMC 的特点与优势

DMC 作为一种成熟的MPC算法,具有以下显著特点和优势:

  • 基于物理直观的阶跃响应模型:

     阶跃响应模型易于理解和通过实验获取,特别适合于缺乏精确机理模型的复杂工业过程。

  • 能够处理多输入多输出系统:

     DMC 可以方便地扩展到 MIMO 系统,通过构建相应的动态矩阵来描述输入之间的耦合关系。

  • 显式处理输入和输出约束:

     通过将约束条件纳入优化问题,DMC 能够有效地处理各种操作限制,避免系统越界运行。

  • 对模型误差和扰动具有一定的鲁棒性:

     预测时域内的滚动优化机制使得 DMC 能够不断根据最新的测量值调整控制策略,从而对模型误差和未知扰动具有一定的抑制能力。

  • 控制律易于在线实现:

     虽然优化问题需要在每个采样时刻求解,但对于线性系统和二次型性能指标,求解效率较高,满足实时控制的要求。

  • 参数调整相对直观:

     DMC 的主要调谐参数包括预测时域 PP、控制时域 MM 和权重矩阵 QQ、RR。这些参数的物理意义比较明确,易于根据实际工程经验进行调整。

4. DMC 的局限性

尽管 DMC 在工业界取得了巨大成功,但也存在一些局限性:

  • 对非线性系统适用性较差:

     DMC 基于线性阶跃响应模型,对于强非线性系统,线性模型无法准确预测系统未来的行为,导致控制性能下降。

  • 对大时延系统的预测精度可能受限:

     虽然 DMC 可以处理时延,但当系统时延较大时,基于历史数据的阶跃响应模型可能无法准确捕捉未来的动态,预测误差增大。

  • 模型阶跃响应曲线的获取和更新:

     阶跃响应曲线需要通过实验或离线计算获取,对于变化缓慢或难以进行扰动实验的系统,模型获取可能比较困难。同时,当系统特性发生变化时,需要重新获取或更新模型。

  • 计算量与预测时域和输入/输出维数相关:

     随着预测时域、控制时域以及系统输入输出维数的增加,优化问题的规模增大,计算量也随之增加,对实时性要求较高的系统可能构成挑战。

  • 权重矩阵的选择对控制性能影响较大:

     权重矩阵 QQ 和 RR 的选择对控制器的性能(如响应速度、超调、鲁棒性等)有显著影响,缺乏系统性的调谐方法,通常需要工程经验和试凑。

5. DMC 的改进与发展

为了克服 DMC 的局限性,研究人员和工程师们提出了许多改进和扩展方法:

  • 非线性 DMC:

     结合非线性模型(如神经网络、模糊模型)进行预测,或者采用在线线性化方法,将非线性问题转化为一系列线性问题进行求解。

  • 自适应 DMC:

     在线估计或更新系统的阶跃响应模型,以适应系统参数或特性变化。

  • 鲁棒 DMC:

     考虑模型不确定性对控制性能的影响,通过在优化问题中加入鲁棒性约束或设计鲁棒性的性能指标,提高控制器的鲁棒性。

  • 多模型 DMC:

     当系统在不同工作点或工况下具有显著不同的特性时,可以建立多个局部模型,并根据当前工作点切换或插值使用相应的模型。

  • 基于状态空间模型的 MPC:

     与基于阶跃响应模型的 DMC 不同,基于状态空间模型的 MPC 更加灵活,可以直接处理更广泛的系统类型,并方便地引入状态估计器。现代的 MPC 研究更多倾向于基于状态空间模型。

  • 分布式和协同预测控制:

     对于大规模互联系统,可以采用分布式或协同的预测控制策略,将复杂的控制任务分解为多个子任务进行处理。

6. 结论

动态矩阵控制(DMC)作为模型预测控制(MPC)的早期成功应用,以其基于直观的阶跃响应模型、能够处理 MIMO 系统和约束条件等优点,在工业过程控制领域发挥了重要作用。尽管存在对非线性系统适用性较差等局限性,但通过持续的研究和改进,如非线性 DMC、自适应 DMC 等,其应用范围和性能得到了不断提升。

当前,随着计算能力的飞速发展以及对控制理论的深入研究,基于状态空间模型的 MPC 已成为主流。然而,DMC 的思想和方法仍然具有重要的借鉴意义,尤其是在对过程机理了解不深、但能够方便获取阶跃响应数据的工业应用中。

未来,模型预测控制的研究将更加侧重于非线性系统控制、鲁棒性增强、计算效率提升、大数据和人工智能技术的融合等方面。DMC 作为 MPC 家族中的经典成员,其原理和实践经验将继续为新的预测控制算法的设计和应用提供启示。深入研究 DMC,不仅有助于理解 MPC 的基本思想,也为解决实际工业控制问题提供了宝贵的经验和方法。

⛳️ 运行结果

🔗 参考文献

[1] 李玉红,刘红军,王东风,等.一种新型的动态矩阵控制算法及仿真研究[J].计算机仿真, 2005, 22(2):4.DOI:10.3969/j.issn.1006-9348.2005.02.031.

[2] 李玉红,刘红军,王东风,et al.一种新型的动态矩阵控制算法及仿真研究[J].计算机仿真, 2005, 22(2):103-103.DOI:CNKI:SUN:JSJZ.0.2005-02-030.

[3] 黄成静,刘红军,王东风.基于MPC的单元机组负荷控制系统仿真[J].计算机仿真, 2003, 20(9):4.DOI:10.3969/j.issn.1006-9348.2003.09.046.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值