【调制BFSK】二进制频移键控FSK的数字调制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在现代通信系统中,数字调制技术扮演着至关重要的角色,它使得我们将数字化的信息转化为适合在各种信道中传输的模拟信号。其中,频移键控(Frequency Shift Keying, FSK)是一种基础且广泛应用的数字调制方式。FSK的核心思想在于通过改变载波的频率来表示不同的数字信息。而在所有FSK的变体中,二进制频移键控(Binary Frequency Shift Keying, BFSK)作为最简单、最基本的类型,具有重要的理论研究价值和实际应用意义。本文旨在深入探讨二进制频移键控的原理、实现方式、特点以及在通信系统中的应用,以期全面理解这一基础的数字调制技术。

二进制频移键控(BFSK)的原理

二进制频移键控(BFSK)是一种采用不同载波频率来表示二进制数字“0”和“1”的调制方式。在BFSK系统中,通常使用两个预设的载波频率,f1f1 和 f2f2,分别对应于二进制比特“0”和“1”。当输入信号为比特“0”时,调制器输出一个频率为 f1f1 的正弦波信号;当输入信号为比特“1”时,调制器输出一个频率为 f2f2 的正弦波信号。因此,BFSK调制后的信号在时域上呈现为在两个离散频率之间切换的波形。

然而,非相干BFSK,即在信号切换时相位不保持连续,也是常见的实现方式。本文将主要聚焦于原理性的讨论,兼顾不同实现的可能性。

为了确保在接收端能够有效地区分这两种频率,频率差需要足够大,以避免在频谱上发生严重的重叠。同时,过大的频率差也会占用更多的频谱资源,这在资源有限的通信系统中是需要权衡考虑的。

二进制频移键控(BFSK)的实现

BFSK的实现主要包括调制器和解调器两部分。

调制器: BFSK调制器通常由一个二进制输入信号源、两个载波发生器和一个开关或多路选择器组成。二进制输入信号控制开关的状态,当输入为“0”时,选择频率为 f1f1 的载波输出;当输入为“1”时,选择频率为 f2f2 的载波输出。此外,也可以使用压控振荡器(Voltage-Controlled Oscillator, VCO)来实现,通过控制VCO的控制电压,使其输出频率在 f1f1 和 f2f2 之间切换,从而实现BFSK调制。

解调器: BFSK解调器的作用是将接收到的BFSK信号还原为原始的二进制信息。常见的BFSK解调方法包括:

  • 相干解调 (Coherent Demodulation):

     相干解调需要接收端生成与发送端载波频率和相位都同步的参考信号。对于BFSK,这意味着需要同时生成频率为 f1f1 和 f2f2 的参考信号,并与接收到的信号进行相关运算。然后,比较两个相关器的输出,输出较大的对应于发送的比特。相干解调的性能通常优于非相干解调,但对同步要求高。

  • 非相干解调 (Non-coherent Demodulation):

     非相干解调不需要接收端与发送端实现精确的载波同步。常见的非相干解调方法是包络检波法。接收信号经过两个带通滤波器,分别中心频率为 f1f1 和 f2f2。然后,对滤波器的输出进行包络检波,比较两个包络的幅度。幅度较大的对应于发送的比特。非相干解调实现简单,对同步要求低,但性能略逊于相干解调。

  • 鉴频器解调 (Discriminator Demodulation):

     鉴频器是一种能够将频率变化转换为幅度变化的电路。对于BFSK信号,可以使用鉴频器将频率为 f1f1 和 f2f2 的信号转换为不同的直流电平,然后通过比较器判决出原始的二进制信息。

二进制频移键控(BFSK)的特点

BFSK作为一种数字调制技术,具有以下显著特点:

  • 抗噪声性能:

     相较于幅度调制,FSK对噪声的敏感度较低。由于信息体现在频率的变化上,一定程度的幅度噪声对解调的影响相对较小。

  • 实现复杂度:

     BFSK的实现相对简单,尤其是在非相干解调的情况下,硬件电路复杂度不高,成本较低。

  • 频谱效率:

     BFSK的频谱效率通常低于其他更高级的调制技术,例如相移键控(PSK)或正交幅度调制(QAM)。这是因为BFSK需要在频谱上划分出两个独立的频带用于传输信息。

  • 带宽需求:

     BFSK信号的带宽取决于两个载波频率之差以及数据的传输速率。为了保证信号不失真,需要的带宽通常比比特率大。

  • 恒包络特性:

     BFSK信号的包络在理想情况下是恒定的。这一特性使得BFSK信号在经过非线性放大器时不会产生严重的失真,适用于对功率放大器线性度要求不高的应用场景。

二进制频移键控(BFSK)的应用

尽管BFSK的频谱效率不高,但由于其实现简单、抗噪声能力较强以及恒包络特性,使得它在一些特定的应用领域仍然得到广泛应用,例如:

  • 低速数据通信:

     在一些对传输速率要求不高但对可靠性要求较高的场景,例如无线电遥控、低速无线传感网络、寻呼机等,BFSK是一个不错的选择。

  • 数据传输标准:

     一些早期的调制解调器标准,如Bell 202,就采用了BFSK技术。

  • 工业控制:

     在工业自动化领域,BFSK常用于在有噪声的环境中传输控制信号。

  • 业余无线电通信:

     在业余无线电通信中,BFSK也被用于传输数据。

BFSK与MSK的关系

值得一提的是,最小频移键控(Minimum Shift Keying, MSK)是BFSK的一种特殊形式。MSK的特点在于,在符号切换时刻,相位保持连续,这使得MSK信号具有更好的频谱特性,旁瓣衰减更快,因此被认为是连续相位的FSK。虽然MSK在技术上可以看作是BFSK的一种优化,但在原理上它们都属于频移键控的范畴。

结论

二进制频移键控(BFSK)作为一种基础的数字调制技术,通过改变载波的频率来表示二进制信息。它具有实现简单、抗噪声能力较强和恒包络等优点,在低速数据通信、工业控制等领域有着广泛的应用。尽管其频谱效率相对较低,但在对成本和复杂度有较高要求的应用场景下,BFSK仍然是一种有效的调制方式。理解BFSK的原理、实现和特点,对于深入学习其他更高级的数字调制技术以及掌握现代通信系统的基础知识具有重要意义。随着技术的不断发展,BFSK可能会与新的技术相结合,或者在特定场景下继续发挥其独特的优势。对BFSK的深入研究有助于我们更好地理解数字通信的基石,并为其未来的发展提供思路。

⛳️ 运行结果

🔗 参考文献

[1] 陈昌明,张靖,彭烨.一种应用于FSK调制器的数字可编程振荡器[J].攀枝花学院学报:综合版, 2005, 22(2):3.DOI:10.3969/j.issn.1672-0563.2005.02.035.

[2] 张鑫龙.基于软件无线电的BFSK和MSK调制解调[D].桂林电子科技大学,2010.DOI:10.7666/d.D563658.

[3] 陈昌明,张靖,彭烨.一种应用于FSK调制器的数字可编程振荡器[J].攀枝花学院学报(综合版), 2005.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值