✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
振动现象作为物理世界中普遍存在的运动形式,渗透于宏观至微观的各个层面。从宏伟的建筑结构到精密的电子设备,从自然界中的地震海啸到生物体内的细胞脉动,振动无处不在。对振动的深入理解和精确分析,不仅是工程技术领域的核心课题,也是基础科学研究的重要组成部分。本文将围绕位移图、放大系数以及自由振动、阻尼振动和强制阻尼振动的传递率这几个关键概念展开论述,旨在系统地阐述这些概念的物理意义、相互关系及其在不同振动类型中的应用。
一、 位移图:振动状态的直观表征
位移图,作为描述振动过程最直观的工具,描绘了振动物体在不同时刻相对于其平衡位置的位移随时间变化的函数关系。通常以时间作为横轴,位移作为纵轴绘制。通过位移图,我们可以清晰地观察到振动的幅度、周期、频率、相位等重要参数,从而全面了解振动的特性。
然而,在实际物理系统中,振动往往伴随着能量的耗散,即存在阻尼。阻尼的存在会导致振幅随时间逐渐衰减。反映在位移图上,表现为振动曲线的包络线呈指数衰减的趋势。对于欠阻尼情况,位移图依然表现出周期性,但每个周期的振幅都小于前一个周期。对于临界阻尼或过阻尼情况,物体不会发生往复振动,而是逐渐趋近于平衡位置,位移图则不再呈现周期性波动。
当系统受到外部周期性力的作用时,即发生强制振动,系统的位移图将呈现更复杂的形态。在瞬态响应阶段,位移图是自由振动和强制振动的叠加;而在稳态响应阶段,位移图则主要反映强制力的频率和振幅,且通常与强制力之间存在相位差。通过分析强制阻尼振动的位移图,我们可以了解系统对不同频率强制力的响应特性,这对于设计抗振结构或减振装置至关重要。
总之,位移图作为振动分析的基础工具,通过直观的图形化表示,为我们理解和描述振动过程提供了便捷有效的途径。对位移图的深入解读,是理解更深层次振动概念的前提。
二、 放大系数:共振现象的量化指标
放大系数,又称动态放大系数,是描述系统在受到外部周期性力作用时,稳态振幅与静态位移之比的无量纲量。静态位移是指将与强制力振幅相等的静力施加于系统时产生的位移。放大系数是衡量系统对不同频率强制力响应强弱的关键指标,尤其在强制阻尼振动中具有重要的物理意义。
阻尼比 ζζ 对放大系数的影响也至关重要。从放大系数的表达式可以看出,阻尼的存在会减小放大系数,尤其是在共振区域。阻尼越大,共振时系统的振幅越小,放大系数峰值越低。这解释了为何在工程实践中,常常通过增加阻尼来抑制有害的共振。
放大系数曲线(通常以频率比为横轴,放大系数为纵轴绘制)能够清晰地展示系统在不同频率下的响应特性。通过分析放大系数曲线,我们可以确定系统的共振频率、共振时系统的放大程度以及阻尼对系统响应的影响。这对于优化系统设计、提高系统的抗振能力具有指导意义。
三、 自由振动:系统固有特性的展现
自由振动是指系统在受到初始扰动后,在没有外部强制力作用下所进行的振动。自由振动是系统固有特性的体现,其振动频率和形式仅取决于系统的自身参数,如质量、刚度和阻尼。对自由振动的研究,是理解更复杂振动类型的基础。
3.1 无阻尼自由振动:理想化的周期运动
在忽略阻尼的理想情况下,自由振动是等幅的周期性运动。如前所述,其位移随时间按正弦或余弦规律变化,振动频率为系统的固有频率 ωn=k/mωn=k/m,其中 mm 是质量,kk 是刚度。无阻尼自由振动具有能量守恒的特点,动能和势能相互转化,总机械能保持不变。无阻尼自由振动模型虽然是理想化的,但对于初步分析系统固有特性具有重要意义。
3.2 阻尼自由振动:能量耗散下的衰减振动
在实际系统中,阻尼总是存在的。阻尼的存在导致自由振动的能量逐渐耗散,振幅随时间衰减。根据阻尼的大小,阻尼自由振动可以分为三种情况:
- 欠阻尼(ζ<1ζ<1):
系统发生衰减的周期性振动。振动频率略低于无阻尼固有频率,振幅按指数规律衰减。位移图呈现出周期性波动,振幅逐渐减小。
- 临界阻尼(ζ=1ζ=1):
系统以最快速度趋近于平衡位置,不发生往复振动。这是实现无超调响应的最佳阻尼状态,常用于测量仪表、车辆悬挂等系统中。
- 过阻尼(ζ>1ζ>1):
系统以更慢的速度趋近于平衡位置,也不发生往复振动。相较于临界阻尼,过阻尼系统的响应更慢。
阻尼自由振动的研究,有助于我们了解系统能量耗散的机制以及不同阻尼对系统衰减特性的影响。通过对阻尼自由振动位移图的分析,可以计算出系统的阻尼比,从而评估系统的阻尼性能。
四、 强制阻尼振动:外部激励下的稳态响应与瞬态响应
强制阻尼振动是指系统在受到外部周期性力作用下,同时存在阻尼的振动。这是工程实践中最常见、也是最复杂的振动类型之一。强制阻尼振动的响应可以分为两个部分:瞬态响应和稳态响应。
4.1 瞬态响应:自由振动与强制振动的叠加
瞬态响应发生在强制力开始作用后的一段时间内。此时,系统的振动是自由振动和强制振动的叠加。瞬态响应的特点是振幅和相位随时间变化,并逐渐衰减。瞬态响应的形式取决于系统的固有特性、阻尼以及初始条件。随着时间的推移,瞬态响应逐渐衰减,最终消失。
4.2 稳态响应:与强制力同频率的周期性振动
当瞬态响应衰减到可以忽略不计时,系统进入稳态响应阶段。此时,系统的振动是与强制力同频率的周期性振动,振幅和相位保持恒定。稳态响应的振幅和相位取决于强制力的频率、振幅、系统的固有频率和阻尼。对稳态响应的研究是强制阻尼振动的重点,因为它决定了系统在长期运行下的振动特性。
强制阻尼振动的稳态振幅和相位可以通过前面提到的放大系数来描述。当强制频率远离系统的固有频率时,系统的响应较小,振幅接近静态位移。当强制频率接近固有频率时,系统发生共振,振幅显著增大,且强制力与位移之间的相位差接近 90 度。当强制频率远大于固有频率时,系统的响应迅速减小,振幅趋近于零,且强制力与位移之间的相位差接近 180 度。
理解强制阻尼振动的稳态响应特性,对于设计和控制振动系统至关重要。通过合理选择系统的参数(如质量、刚度、阻尼),可以避免有害的共振,或者利用共振实现特定功能。
五、 传递率:激励向支撑结构的传递效率
传递率,尤其在强制阻尼振动中,是指从振动系统传递到其支撑结构的力或位移的比例。它衡量了振动从一个部分传递到另一个部分的效率。传递率的概念在减振设计中具有重要的应用价值。
对于一个受到基础激励的单自由度系统,传递率通常定义为传递到基础上的力与激励力之比,或者传递到系统上的位移与基础激励位移之比。以基础位移激励为例,传递率 TrTr 可以表示为系统相对于基础的位移幅值与基础位移幅值之比,或者系统绝对位移幅值与基础位移幅值之比。
结论
位移图、放大系数以及自由振动、阻尼振动和强制阻尼振动的传递率是理解和分析振动现象的核心概念。位移图为振动过程提供了直观的 graphical 表示;放大系数量化了系统在不同频率下的响应特性,尤其揭示了共振现象的强度;自由振动展现了系统的固有特性,为理解更复杂的振动类型奠定了基础;强制阻尼振动是工程实践中最常见的振动形式,其稳态响应和传递率的研究对于系统的设计和控制至关重要。
⛳️ 运行结果
🔗 参考文献
[1] 杨传猛.复合阻尼结构动力学建模及振动特性研究[D].哈尔滨工程大学,2019.
[2] 黎崛珉,陆泽琦,陈立群,等.非线性阻尼非线性刚度隔振系统随机动力学特性研究[J].应用数学和力学, 2017.
[3] 刘兴天,孔祥森,申军烽,等.卫星遥感器微振动隔离用液体阻尼隔振器[J].光学精密工程, 2017, 25(9):6.DOI:10.3788/OPE.20172509.2448.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇