数字图像处理 - 仿射变换

本文深入探讨了数字图像处理中的仿射变换,解释了线性变换的概念,并通过实例展示了仿射变换的过程。内容包括仿射变换的矩阵表示、前向映射与反向映射,以及在神经网络模型中的相关讨论。此外,还提到了不同的插值算法在处理非整数坐标时的作用。
摘要由CSDN通过智能技术生成

几何变换

几何变换 = 坐标的空间变换(最常用的就是 仿射变换) + 插值

仿射变换

设 (x, y) 为原图像中的坐标,(v,w) 为变换后图像中的坐标,图像的仿射变换可以表示为:

\left\{\begin{matrix} x=a_1v+b_1w+c_1 \\ \\ y=a_2v+b_2w+c_2 \end{matrix}\right.

对应的矩阵表示为:

\begin{bmatrix} x & y & 1 \end{bmatrix}=\begin{bmatrix} v & w & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ c_1 & c_2 & 1 \end{bmatrix}=\begin{bmatrix} v & w & 1 \end{bmatrix} T

【注】\begin{bmatrix} u & w & 1 \end{bmatrix}添加 1 是为了和平移变换中的 c 维度对其,\begin{bmatrix} x & y & 1 \end{bmatrix} 添加 1 只是为了和 \begin{bmatrix} u & w & 1 \end{bmatrix} 对应。

其中 T 可以有如下几种形式(皆为线性变换):

什么是线性变换?

设算子 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值