数字图像处理 - 仿射变换

本文深入探讨了数字图像处理中的仿射变换,解释了线性变换的概念,并通过实例展示了仿射变换的过程。内容包括仿射变换的矩阵表示、前向映射与反向映射,以及在神经网络模型中的相关讨论。此外,还提到了不同的插值算法在处理非整数坐标时的作用。
摘要由CSDN通过智能技术生成

几何变换

几何变换 = 坐标的空间变换(最常用的就是 仿射变换) + 插值

仿射变换

设 (x, y) 为原图像中的坐标,(v,w) 为变换后图像中的坐标,图像的仿射变换可以表示为:

\left\{\begin{matrix} x=a_1v+b_1w+c_1 \\ \\ y=a_2v+b_2w+c_2 \end{matrix}\right.

对应的矩阵表示为:

\begin{bmatrix} x & y & 1 \end{bmatrix}=\begin{bmatrix} v & w & 1 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & 0 \\ b_1 & b_2 & 0 \\ c_1 & c_2 & 1 \end{bmatrix}=\begin{bmatrix} v & w & 1 \end{bmatrix} T

【注】\begin{bmatrix} u & w & 1 \end{bmatrix}添加 1 是为了和平移变换中的 c 维度对其,\begin{bmatrix} x & y & 1 \end{bmatrix} 添加 1 只是为了和 \begin{bmatrix} u & w & 1 \end{bmatrix} 对应。

其中 T 可以有如下几种形式(皆为线性变换):

什么是线性变换?

设算子 

### 数字图像处理中的仿射变换 #### 仿射变换概念 仿射变换是一种二维坐标到二维坐标的线性变换,其保持了平行直线和平行线段的比例不变。这种变换可以通过一系列基本操作来描述,比如旋转、平移、缩放以及错切等[^2]。 #### 实现方法 在 Python 中利用 OpenCV 库能够方便地执行仿射变换。具体来说,`cv2.warpAffine()` 函数用于实施该类转换,它接收三个主要参数:输入图片数组、表示所需变化的 \(2 \times 3\) 的浮点型矩阵 M 和输出图像尺寸 (宽, 高)[^3]。 下面是一个简单的例子展示如何通过 `cv2.getRotationMatrix2D()` 获取旋转变换所需的变换矩阵并应用于一张给定的照片上: ```python import cv2 import numpy as np # 加载原图 img = cv2.imread('example.jpg') height, width = img.shape[:2] # 定义中心点、角度和比例因子构建旋转矩阵 rotation_matrix = cv2.getRotationMatrix2D((width/2,height/2), 45, 1) # 执行仿射变换 rotated_img = cv2.warpAffine(img, rotation_matrix, (width, height)) # 显示结果 cv2.imshow('Rotated Image', rotated_img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 此代码片段实现了对指定路径下名为 'example.jpg' 文件所代表的一张照片顺时针方向上的45度角旋转效果。 #### 应用场景 仿射变换广泛存在于各种实际项目里,尤其是在计算机视觉领域内扮演着重要角色。例如,在车牌识别系统中,为了提高字符分割与匹配精度,通常会先采用仿射变换技术校正拍摄过程中产生的倾斜现象;另外,在医学影像分析方面也可以见到它的身影——帮助医生更清晰直观地观察器官结构特征。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值