Mish激活函数,ReLU的继任者

Mish是一个自我正则化的非单调神经激活函数,研究表明它在多个任务上优于ReLU和Swish,提供了更好的训练稳定性和准确性。Mish的表达式为Mish=x * tanh(ln(1+e^x)),其平滑特性可能有助于信息在深层神经网络中的传播。要将Mish应用到自己的网络中,可以使用提供的PyTorch实现。
摘要由CSDN通过智能技术生成

参考链接:https://blog.csdn.net/u011984148/article/details/101444274

对激活函数的研究一直没有停止过,ReLU还是统治着深度学习的激活函数,不过,这种情况有可能会被Mish改变。

retinaface中,mish比leakyrelu快

但是核心网络relu 换mish后,内存占用大一倍。

epoch为 8时 map对比:

map:前者 0.78 后者 0.6

 

1,常用的激活函数

 

2,Mish激活函数

# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
from matplotlib import pyplot as plt

class Mish(nn.Module):
    def __init__(self):
        s

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值