centertrack

CenterTrack是一款高效的多目标跟踪模型,基于CenterNet检测器,以28 FPS运行,在nuScenes 3D跟踪基准上表现优异。通过预测目标中心点的偏移向量进行跟踪,简化了跟踪流程,实现端到端训练和微分。这种方法将目标表示为点,简化了基于跟踪的检测和跨时间目标关联,提高了速度和准确性。
摘要由CSDN通过智能技术生成

模型70多m

有torch版dla

此外,CenterTrack 很容易扩展到单目 3D 跟踪,只需恢复额外的 3D 属性即可。以单目视频作为输入,以 28 FPS 运行,CenterTrack 在新发布的 nuScenes 3D 跟踪基准上实现了 28.3% AMOTA@0.2,显著超过单目基线方法。

 

  • 论文链接:https://arxiv.org/pdf/2004.01177.pdf

  • 项目链接:https://github.com/xingyizhou/CenterTrack

而最近来自德克萨斯奥斯汀分校和英特尔研究院的一项研究介绍了,如何将基于点的跟踪与同时检测和跟踪结合起来,从而进一步简化跟踪的复杂性。

具体而言,该研究使用近期提出的 CenterNet 检测器来定位目标中心 [56]。研究者把检测器和用点表示的先前踪片(tracklet)置于两个连续帧上。训练检测器,使其输出当前帧目标中心和前一帧目标中心的偏移向量。研究者将这个偏移向量视为中心点的属性,而这只需要一点额外的计算代价。仅基于前一帧检测到的中心点和预计偏移之间的距离来满足关联目标物体的需求,这是一种贪心匹配。该跟踪器以端到端形式进行训练且可微分。

 

用点来跟踪目标简化了跟踪流程的两个关键部分:

 

  • 第一,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值