随机分配训练集,验证集

68 篇文章 27 订阅

目录

coco json格式分配训练集,验证集

单个文件分配训练集,验证集


coco json格式分配训练集,验证集

import glob
import os.path
import random
import shutil

if __name__ == '__main__':



    train_img=r'D:\work\images'
    train_dir=r'D:\work\train'
    train_val=r'D:\work\val'

    os.makedirs(train_dir,exist_ok=True)
    os.makedirs(train_val,exist_ok=True)
    label_dir=r'D:\work\jsons'
    files = glob.glob(train_img + '/*.jpg')
    random.shuffle(files)
    data_len = len(files)

    train_len=int(data_len*0.7)

    for index, file in  enumerate(files):

        if index<train_len:
            shutil.copy(file,train_dir)
            shutil.copy(os.path.join(label_dir,os.path.basename(file)[:-4]+".json"),train_dir)
        else:
            shutil.copy(file, train_val)
            shutil.copy(os.path.join(label_dir, os.path.basename(file)[:-4] + ".json"), train_val)



单个文件分配训练集,验证集


import random
import os
if __name__ == '__main__':

    file = r'E:/project/icdar2015_label.txt'

    with open(file, 'r',encoding="utf-8") as f:
        datas = f.readlines()
    random.shuffle(datas)
    file_train=r'E:/project/label_train.txt'
    file_val=r'E:/project/label_val.txt'
    data_len = len(datas)
    train_len=int(data_len*0.7)
    trains=[]
    vals=[]
    for index, file in enumerate(datas):
        if index<train_len:
            trains.append(file)
        else:
            vals.append(file)
    with open(file_train, 'w',encoding="utf-8") as f:
        f.writelines(trains)
    with open(file_val, 'w',encoding="utf-8") as f:
        f.writelines(vals)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值