自动驾驶数据集waymo 免费下载

目录

waymo数据集

百度网盘下载,

gsutil下载数据集

waymo转coco格式:

可视化参考: 

数据处理waymo-open-dataset-tf

数据类型格式说明

nuScenes数据集

相关资料:

百度网盘下载

3d室内数据集 scanent

SemanticKitti


waymo数据集

https://waymo.com/open

waymo提供了两种数据集,motion与perception两种,其中motion是鸟瞰图,官网中有介绍,主要用于轨迹预测之类的任务,perception主要用于目标检测跟踪之类的任务,是第一视角,有相机和雷达信息。

perception主要用于目标检测跟踪之类的任务,是第一视角,有相机和雷达信息,并且在github上有公开的读取数据方法,另外,在读取perception数据时需要安装waymo-open-dataset-tf这个库,安装不上请用清华源,具体请按照官方quick_start教程,另外github有许多已经集成许多功能的代码,搜索waymo就有。

quick_start:

waymo-open-dataset/quick_start.md at master · waymo-research/waymo-open-dataset · GitHub
                        
原文链接:https://blog.csdn.net/AmbitiomGuo/article/details/123300393

waymo数据集介绍说明-CSDN博客

百度网盘下载,

自己注册一下,国内用户借助科学上网可以下载,但是下载速度很慢,

下载了一部分数据,百度网盘分享出来,可以免费下载

通过百度网盘分享的文件:waymo
链接:https://pan.baidu.com/s/1ctG1tA1D9POudptWD4Av7w 
提取码:6881 
--来自百度网盘超级会员V6的分享

gsutil下载数据集

gsutil -m cp -r "gs://waymo_open_dataset_v_1_3_0/" . 

waymo转coco格式:

Waymo数据集下载与使用_51CTO博客_waymo 数据集

在实验中,并不需要将所有的数据集,因此博主只下载了train_0000.tar文件,该数据集也达到近23G。

tar文件展示:

里面的内容是tensorflow读取格式的文件。

如果觉得23个G下载起来太过费时,也可以选择下载单个文件。

https://github.com/erksch/waymo-open-dataset-viewer/tree/master

依赖项:

# 安装 tensorflow (需要注意tensorflow与cuda版本对应,我这里使用cuda 11.0版本)
pip install tensorflow==2.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

#安装 pytorch (pytorch-lightning 是否安装自行选择)
pip install pytorch-lightning==1.4.0
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

# 测试gpu是否可用(返回 gpu 信息和 True 则表示安装正确)
python
>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
>>> import torch
>>> torch.cuda.is_available()
True
>>> quit()

 # 安装 waymo-open-dataset 需要与tensorflow版本对应
 pip install waymo-open-dataset-tf-2-4-0

waymo-open-dataset 没找到,pypi有安装包,只支持linux 系统。

可视化参考: 

https://blog.csdn.net/weixin_50232758/article/details/132260047

  • 数据集官网:https://waymo.com/open/
  • 数据集开发工具包:https://github.com/waymo-research/waymo-open-dataset
    (依靠数据集开发工具包,可以了解标签的更多信息,并可以使用 Python 阅读标签,可视化点云)
  • 官方下载地址:https://waymo.com/open/download/

https://github.com/waymo-research/waymo-open-dataset/tree/master/docs

数据处理waymo-open-dataset-tf

pip install waymo-open-dataset-tf-2-12-0==1.6.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

数据类型格式说明

https://github.com/waymo-research/waymo-open-dataset/blob/master/src/waymo_open_dataset/protos/map.proto

数据协议中文注释:

https://zhuanlan.zhihu.com/p/419503684

如果 label.type 等于 label_pb2.Label.Type.TYPE_VEHICLE:
    obj_class = "vehicle"  # 物体类别为“车辆”
elif label.type 等于 label_pb2.Label.Type.TYPE_PEDESTRIAN:
    obj_class = "pedestrian"  # 物体类别为“行人”
elif label.type 等于 label_pb2.Label.Type.TYPE_SIGN:
    obj_class = "sign"  # 物体类别为“交通标志”
elif label.type 等于 label_pb2.Label.Type.TYPE_CYCLIST:
    obj_class = "cyclist"  # 物体类别为“骑车人”
else:
    obj_class = "misc"  # 物体类别为“杂项”

nuScenes数据集

相关资料:

自动驾驶数据集汇总 - 知乎

还记录了雷达数据。这个数据集由1000个场景组成(即scenes,这就是该数据集名字的由来),每个scenes长度为20秒,包含了各种各样的情景。在每一个scenes中,有40个关键帧(key frames),也就是每秒钟有2个关键帧,其他的帧为sweeps。关键帧经过手工的标注,每一帧中都有了若干个annotation,标注的形式为bounding box。不仅标注了大小、范围、还有类别、可见程度等等。这个数据集不久前发布了一个teaser版本(包含100个scenes),正式版(1000个scenes)的数据要2019年发布。这个数据集在sample的数量上、标注的形式上都非常好,记录了车的自身运动轨迹(相对于全局坐标),包含了非常多的传感器,可以用来实现更加智慧的识别算法和感知融合算法。
我需要包含毫米波雷达/激光雷达/摄像头的数据集,所以需要在数据集的选择上选取包含这三类传感器的数据集,故选择了nuscenes数据集。
 

百度网盘下载

如果只是想要用mini数据集的话,可以直接官网下载,我当时记得大概只花了两个小时不到。这里网盘只提供完整数据集下载。

链接:https://pan.baidu.com/s/1cKyOHlIeuLROr1fkrREWzA 
提取码:2510 

原文链接:https://blog.csdn.net/weixin_62497890/article/details/131288914

3d室内数据集 scanent

RGB-D数据集

深度学习(1)RGB-D数据集:ScanNet_rgbd数据集-CSDN博客

SemanticKitti

上面和左边是原始数据集,下面和右边是加入语义标签后的可视化数据集效果。代码链接如下:
链接:https://pan.baidu.com/s/1NlfHSpPLoj04hwXRKQ5QvA
提取码:fnjx
根据requirements.txt文件安装所需安装包,再按照里面readme.md文件把数据集放入相应文件夹运行即可。

数据集官网地址
www.semantic-kitti.org

数据集网盘链接
官网共有三个文件夹,分别是data_odometry_velodyme,data_odometry_calib,和data_odometry_labels,文件较大80G左右,建议存入硬盘。
链接:https://pan.baidu.com/s/1nCNiCFrGoxz7OIxpZWbsZw
提取码:1iv2

共00-21个序列场景,提供00文件夹的完整数据集:
链接:https://pan.baidu.com/s/1eLqvrazKdzs-pTjn2saYHA
提取码:ruig
                        
原文链接:https://blog.csdn.net/Zeal510/article/details/121602764

### 自动驾驶目标检测常用数据集 对于自动驾驶中的目标检测任务,多个公开可用的数据集提供了丰富的资源来支持研究和发展工作。这些数据集不仅涵盖了不同环境条件下的场景,还包含了多种传感器模态的信息。 #### KITTI 数据集[^1] KITTI 是最早发布的大型自动驾驶开源数据集之一。它主要由安装在车辆上的摄像头和激光雷达收集而来,提供图像、点云以及两者融合后的多模态数据。该数据集中包含大量关于城市道路环境中行人和其他交通参与者的标注信息,适用于评估视觉和LiDAR为基础的目标检测算法性能。 #### Waymo Open Dataset Waymo 开放数据集是由谷歌旗下无人驾驶公司Waymo所发布的大规模高分辨率传感数据集合。此数据集覆盖了更广泛的地理区域,并且拥有更多的样本数量与类别多样性。除了常规的日间晴朗天气状况外,也特别收录了一些恶劣气候条件下(如下雨天或雾天)行驶记录,这有助于提升模型应对复杂工况的能力[^2]。 #### nuScenes 数据库 nuScenes 提供了一个更加全面细致的城市动态场景描述框架,其特色在于引入了更多种类别的实例标签——比如自行车骑行者、摩托车手等细分类别;同时增加了长时间序列跟踪的支持,使得能够更好地理解对象的行为模式变化规律。此外,nuScenes 还强调跨域适应性的挑战,在不同城市的采集站点之间存在显著差异的情况下测试模型泛化能力的重要性[^3]。 ```python import os from nuscenes.nuscenes import NuScenes nusc = NuScenes(version='v1.0-mini', dataroot='/path/to/nuscenes', verbose=True) print(f"The number of scenes in this dataset is {len(nusc.scene)}") ``` #### BDD100K Berkeley DeepDrive (BDD) 100K 是另一个广泛使用的视频级别大规模街景图片/视频片段合辑。相比其他同类产品而言,它的独特之处体现在时间维度连续性和空间分布广度方面:即每一段录像都跨越较长距离并贯穿整个行程过程,从而可以捕捉到更为真实的交互情况与发展态势特征。而且,针对特定极端气象现象进行了专门采样补充,如浓雾天气下拍摄的内容就非常珍贵[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值