神经网络量化工具AIMET学习笔记

AIMET 是一个用于神经网络量化和压缩的工具,支持与 PyTorch 和 TensorFlow 模型配合使用,提供了量化模拟、量化感知训练、模型压缩等功能。它通过无数据量化、自适应舍入等技术保持模型准确性。此外,AIMET 还支持循环模型(如 RNN、LSTM 和 GRU)的量化,并能够显著压缩模型大小,如 Resnet-50 和 Resnet-18,同时保持高精度。文章还介绍了环境安装及常见错误解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

为什么选择 AIMET?

AdaRound(自适应舍入)

ADAS 对象检测

循环模型的量化

模型压缩

环境安装

报错1:liblapack.so.3: cannot open shared object file: No such file or directory

报错2:ModuleNotFoundError: No module named 'jsonschema'

QAT量化训练笔记


为什么选择 AIMET?

与 PyTorch 和 TensorFlow 模型配合使用。
支持高级量化技术:使用整数运行时进行推理比使用浮点运行时快得多。 例如,模型在 Qualcomm Hexagon DSP 上的运行速度比在 Qualcomm Kyro CPU 上快 5 到 15 倍。 此外,8 位精度模型的占用空间比 32 位精度模型小 4 倍。 然而,在量化 ML 模型时保持模型准确性通常具有挑战性。 AIMET 使用无数据量化等新技术解决了这个问题,这些技术在几个流行模型上提供了最先进的 INT8 结果。
支持先进的模型压缩技术,使模型在推理时运行得更快并需要更少的内存。
AIMET 旨在自动优化神经网络,避免耗时且繁琐的手动调整。 AIMET 还提供用户友好的 API,允许用户直接从他们的 TensorFlow 或 PyTorch 管道进行调用。
支持的功能
量化

跨层均衡:均衡权重张量以减少跨通道的幅度变化
偏差校正:校正由于量化而引入的层输出偏移
自适应舍入:学习给定未标记数据的最佳舍入
量化模拟:模拟目标量化推理精度
量化感知训练:使用量

内容概要:本文详细介绍了使用COMSOL进行三相电力变压器温度场与流体场耦合计算的具体步骤和技术要点。首先讨论了变压器温升问题的重要性和现有仿真与实测数据之间的偏差,接着阐述了电磁-热-流三场耦合建模的难点及其解决方法。文中提供了关键的材料属性设置代码,如变压器油的密度和粘度随温度变化的关系表达式,并强调了网格划分、求解器配置以及后处理阶段需要注意的技术细节。此外,还分享了一些实用的经验和技巧,例如采用分离式步进求解策略、优化网格划分方式等,确保模型能够顺利收敛并获得精确的结果。最后,作者推荐了几种常用的湍流模型,并给出了具体的参数设置建议。 适用人群:从事电力系统设计、变压器制造及相关领域的工程师和技术人员,特别是那些希望深入了解COMSOL软件在复杂多物理场耦合计算方面应用的人群。 使用场景及目标:适用于需要对变压器内部温度分布和油流情况进行精确模拟的研究或工程项目。主要目的是提高仿真精度,使仿真结果更加贴近实际情况,从而指导产品设计和优化运行参数。 其他说明:文中不仅包含了详细的理论解释和技术指导,还提供了一些实际案例供读者参考。对于初学者来说,可以从简单的单相变压器开始练习,逐步掌握复杂的三相变压器建模技能。同时,作者提醒读者要注意单位的一致性和材料属性的准确性,这是避免许多常见错误的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值