目录
deepseek-r1本地部署,这个比较好,推荐
公司数据不泄露,DeepSeek R1本地化部署+web端访问+个人知识库搭建与使用,喂饭级实操教程,老旧笔记本竟跑出企业级AI_deepseek 本地知识库-CSDN博客
命令行运行:
ollama run deepseek-r1:1.5b
ollama run deepseek-r1:7b
Chatbox连接ollama服务
下载地址:
教程:
教程如何将 Chatbox 连接到远程 Ollama 服务:逐步指南 - Chatbox 帮助中心:指南与常见问题
DeepSeek接入个人知识库,一般电脑也能飞速跑,确实可以封神了!-CSDN博客
总结来说:whoosh(本地查询快) + DeepSeek-r1:1.5b(回答极速、效果还有保证)
whoosh(本地查询快) ,快到什么程度,20页的PDF,按关键词查询能在ms级;
知乎教程,需要注册:
https://zhuanlan.zhihu.com/p/19848028238
maxkb需要注册,搭建客服助手
Deepseek+本地知识库定制专属AI客服,三步轻松搞定!_哔哩哔哩_bilibili
api调用:
from openai import OpenAI
class DeepSeekChat:
def __init__(self, api_key, base_url="https://api.deepseek.com"):
self.client = OpenAI(api_key=api_key, base_url=base_url)
def chat(
self,
system_message,
user_message,
model="deepseek-chat",
max_tokens=1024,
temperature=0.7,
stream=True,
):
response = self.client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message},
],
max_tokens=max_tokens,
temperature=temperature,
stream=stream,
)
if stream:
return self._stream_response(response)
else:
return response.choices[0].message.content
def _stream_response(self, response):
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
print(content, end="", flush=True)
full_response += content
print("\r\n===============我是分隔线===============")
return full_response
# 使用示例
if __name__ == "__main__":
deepseek_chat = DeepSeekChat(api_key="[你的 API Key]")
response = deepseek_chat.chat(
system_message="你是一个聪明的 AI 助手",
user_message="三国演义中战斗力排名前 10 的武将有谁?",
stream=True,
)
print("完整回答:", response)