deepseek v3 搭建个人知识库

目录

deepseek-r1本地部署,这个比较好,推荐

Chatbox连接ollama服务

 知乎教程,需要注册:

maxkb需要注册,搭建客服助手

api调用:


deepseek-r1本地部署,这个比较好,推荐

公司数据不泄露,DeepSeek R1本地化部署+web端访问+个人知识库搭建与使用,喂饭级实操教程,老旧笔记本竟跑出企业级AI_deepseek 本地知识库-CSDN博客

命令行运行:

ollama run deepseek-r1:1.5b
ollama run deepseek-r1:7b

Chatbox连接ollama服务

下载地址:

Install Windows(PC) | Chatbox

教程:

教程如何将 Chatbox 连接到远程 Ollama 服务:逐步指南 - Chatbox 帮助中心:指南与常见问题

DeepSeek接入个人知识库,一般电脑也能飞速跑,确实可以封神了!-CSDN博客

总结来说:whoosh(本地查询快) + DeepSeek-r1:1.5b(回答极速、效果还有保证)

whoosh(本地查询快) ,快到什么程度,20页的PDF,按关键词查询能在ms级;

 知乎教程,需要注册:

https://zhuanlan.zhihu.com/p/19848028238

maxkb需要注册,搭建客服助手

Deepseek+本地知识库定制专属AI客服,三步轻松搞定!_哔哩哔哩_bilibili

api调用:

from openai import OpenAI

class DeepSeekChat:
    def __init__(self, api_key, base_url="https://api.deepseek.com"):
        self.client = OpenAI(api_key=api_key, base_url=base_url)

    def chat(
        self,
        system_message,
        user_message,
        model="deepseek-chat",
        max_tokens=1024,
        temperature=0.7,
        stream=True,
    ):

        response = self.client.chat.completions.create(
            model=model,
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": user_message},
            ],
            max_tokens=max_tokens,
            temperature=temperature,
            stream=stream,
        )

        if stream:
            return self._stream_response(response)
        else:
            return response.choices[0].message.content

    def _stream_response(self, response):
        full_response = ""
        for chunk in response:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                print(content, end="", flush=True)
                full_response += content
        
        print("\r\n===============我是分隔线===============")
        return full_response

# 使用示例
if __name__ == "__main__":
    deepseek_chat = DeepSeekChat(api_key="[你的 API Key]")
    response = deepseek_chat.chat(
        system_message="你是一个聪明的 AI 助手",
        user_message="三国演义中战斗力排名前 10 的武将有谁?",
        stream=True,
    )
    print("完整回答:", response)

### 构建DeepSeek本地知识库并集成至Chatbox #### 安装与初步配置 为了构建DeepSeek本地知识库并与Chatbox集成,需先完成软件环境的准备。安装完成后,在启动Chatbox时会显示向导页面,此时应选择“使用自己的API key或本地模型”,并在模型提供方选项里指定“OLLAMA API”。这一操作基于所使用的DeepSeek模型由Ollama平台部署而来[^1]。 对于模型的选择部分,应当选取先前已下载并成功安装于本地环境中的特定版本,比如`deepseek-r1:7b`或是针对Mac设备的大规模参数版本`deepseek-r1:14b`[^2]。确保接口地址维持默认设定即`http://localhost:11434`不变,这正是Ollama服务监听的标准URL路径。 #### 测试与验证连接有效性 一旦上述设置完毕并保存后,便可以在Chatbox内开启对话窗口来检验同DeepSeek之间的通信状况。如果一切正常运作,则意味着可以顺利调用该大型语言模型的能力来进行问答交流等活动,从而实现高效的人机互动体验。 #### 跨操作系统支持说明 值得注意的是,不同操作系统下获取和部署DeepSeek的方式有所差异。例如Windows用户可以从官方GitHub仓库下载适用于本系统的二进制文件,并考虑借助网络加速工具提升资源加载效率;而苹果电脑则有专门面向M系列芯片优化过的指南可供参考[^3]。 ```bash # 对于Linux/MacOS, 可能需要执行如下命令以激活虚拟环境(视具体安装情况) source venv/bin/activate ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值