MCP(Model Context Protocol)的热度还未消散,新的 Agent 接口标准 A2A(Agent2Agent)又悄然登场。
就在上周,Google 在 Cloud Next 大会上正式推出了 Agent2Agent(A2A)开放协议。简单来说,A2A 旨在为 Agent 之间的通信提供一个开放标准,促进不同 Agent 之间的协作与交互。
目前,AI 领域有三大巨头在 Agent 生态中积极布局:
-
- Anthropic:推出了 MCP,旨在标准化 AI 大模型与外部工具和数据源的交互。
-
- Google:推出了 A2A,专注于 Agent 之间的通信和协作。
-
- OpenAI:早在2023年就推出了 Function Calling,为大模型提供了工具调用功能。
这三大巨头的举措,仿佛是在为 AI Agent 的发展铺设一条从个体到集体的进化之路。从大模型本身,到为大模型添加工具调用功能,再到大模型与工具的交互标准,最后到 AI Agent 之间的通信协议,这一系列的发展就像是为一个聪明的大脑逐步武装四肢,赋予多种能力,最终使其能够协作完成复杂任务,形成一个高效的团队。
接下来,我们对 MCP、A2A 和 Function Calling 进行全面的解读与对比,探讨它们之间的具体区别以及如何实现合作。
—1—
Function Calling:直接但缺乏扩展性
Function Calling 是由 OpenAI 等公司推动的一种技术,它允许大语言模型(LLM)通过自然语言指令与外部工具和服务进行交互,从而将自然语言转换为具体的 API 调用。这一技术解决了大语言模型在训练完成后知识更新停滞的问题,使大模型能够获取实时信息,比如:当前的天气、股市收盘点数等。
第一、工作原理
Function Calling 的工作原理可以通过以下4个步骤来理解:
1、识别需求:大模型识别出用户的问题需要调用外部 API 来获取实时信息。比如:用户询问“今天北京的天气如何?”大模型会识别出这是一个关于实时天气的问题。
2、选择函数:大模型从可用的函数库中选择合适的函数。在这个例子中,大模型会选择 get_current_weather 函数。
3、准备参数:大模型准备调用函数所需的参数。例如:
{ "location": "北京", "unit": "celsius"}
3、调用函数:AI 应用使用这些参数调用实际的天气 API,获取北京的实时天气数据。
4、整合回答:大模型将获取的数据整合成一个完整的回答,比如:“根据最新数据,北京今天的天气晴朗,当前温度23°C,湿度45%,微风。今天的最高温度预计为26°C,最低温度为18°C。”
第二、对开发者的好处
对于开发者来说,使用 LLM 的 Function Calling 入门相对容易。开发者只需按照 API 的要求定义函数规格(通常是 JSON 格式),并将其随 Prompt 请求发送给大模型。大模型会根据需要调用这些函数,整个逻辑相当直观。因此,对于单一大模型、少量功能的简单应用,Function Calling 的实现非常直接,几乎可以“一键”将大模型输出对接到代码逻辑中。
第三、局限性
然而,Function Calling 也有一些局限性:
缺乏跨大模型的一致性:每个 LLM 供应商的接口格式略有差异,这使得开发者在支持多个大模型时需要为不同的 API 做适配,或者使用额外的框架来处理这些差异。
平台依赖性:Function Calling 通常依赖于特定的平台或框架,这限制了其在不同环境中的通用性。
扩展性有限:虽然 Function Calling 能够解决特定问题,但在面对更复杂的任务时,其扩展性可能会受到限制。开发者可能需要为每个新功能编写新的函数,并确保这些函数与模型的交互逻辑兼容。
第四、总结
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。然而,它的局限性在于缺乏跨模型的一致性和平台依赖性。尽管如此,Function Calling 仍然是一个重要的技术,尤其是在需要快速实现特定功能时。未来,随着技术的不断发展,我们期待看到更多能够克服这些局限性的解决方案。
—2—
MCP:构建 AI 应用与外部工具的桥梁
MCP(Model Context Protocol)是由 Anthropic 公司提出的一种协议,旨在解决不同大语言模型(LLM)与不同外部工具集成的标准化问题。通过MCP,开发者能够以一种统一的方式将各种数据源和工具连接到 AI 大模型,从而提升大模型的实用性和灵活性。
目前,MCP 生态已经得到了广泛的支持,包括 Anthropic 的 Claude 系列、OpenAI 的 GPT 系列、Meta 的 Llama 系列、DeepSeek、阿里的通义系列以及 Anysphere 的 Cursor 等主流模型均已接入 MCP 生态。
第一、MCP 的架构设计
MCP 采用了客户端-服务器架构,主要包括以下几个核心组件:
1、MCP 主机(Hosts)
角色:这是需要访问数据的程序,例如Claude Desktop、各种IDE或AI工具。
功能:它们是MCP生态系统的入口点,负责向用户提供AI功能,并作为用户与AI模型之间的桥梁。
2、MCP 客户端(Clients)
角色:这些是协议客户端,负责维持与 MCP 服务器的1:1连接。
功能:它们处理通信细节,确保主机和服务器之间的数据传输顺畅,从而实现高效的数据交互。
3、MCP 服务器(Servers)
角色:这些是轻量级程序,每个服务器都通过标准化的 Model Context Protocol 暴露特定功能。
功能:服务器是 MCP 的核心,它们连接 AI 大模型与实际数据源,使模型能够访问和操作数据。
4、数据源
本地数据源:包括您计算机上的文件、数据库和服务,MCP 服务器可以安全地访问这些资源。
远程服务:通过互联网可用的外部系统(比如:通过 API),MCP 服务器可以连接这些系统,从而扩展模型的能力。
第二、MCP 的优势
统一性:MCP 提供了一个统一的协议标准,使得不同 AI 大模型能够以一致的方式连接到各种数据源和工具,从而避免了平台依赖性问题。
安全性:通过 MCP,数据的传输和访问过程更加安全,敏感数据可以保留在本地,无需全部上传到云端。
灵活性:MCP 支持多种数据源和工具的连接,无论是本地资源还是远程服务,都可以轻松集成到AI 应用中。
生态丰富:MCP 生态已经得到了广泛的支持,开发者可以利用现有的MCP服务器和工具,快速构建和部署AI应用。
第三、总结
MCP 通过其客户端-服务器架构和标准化的协议,为 AI 大模型与外部工具和数据源的集成提供了一个高效、安全且灵活的解决方案。它不仅解决了不同大模型与工具之间的兼容性问题,还为开发者提供了一个丰富的生态系统,使得AI应用的开发和部署变得更加简单和高效。
—3—
A2A:助力 Agent 间的通信与协同
谷歌最新推出的 A2A(Agent2Agent)开放协议,专注于解决不同 Agent 之间的通信和协同问题,旨在构建一个更加灵活和高效的多 Agent 系统。
要深入理解A2A协议,我们首先需要掌握几个关键概念:
第一、关键概念
A2A Client:类似于点餐的顾客,负责向 A2A Server 发送请求,启动任务。
A2A Server:类似于餐厅的服务员和厨师团队,负责处理请求并返回响应,告知任务的状态。
任务状态:任务在执行过程中可能会经历多个状态,比如:已提交、处理中、需要输入等,最终完成或失败。
第二、典型工作流程
A2A 协议的典型工作流程可以分为以下几个步骤:
1、请求发送:A2A Client 向 A2A Server 发送请求,启动一个任务。这个请求包含了任务的详细信息和所需的操作。
2、请求处理:A2A Server 接收到请求后,开始处理任务,并返回一个初始响应,告知任务的当前状态。
3、状态更新:任务在执行过程中会经历多个状态变化。A2A Server 会定期更新任务状态,并将这些状态信息反馈给 A2A Client。
4、任务完成或失败:任务最终会完成或失败。A2A Server 会将最终结果返回给 A2A Client,告知任务的执行结果。
第三、A2A 的优势
灵活性:A2A 协议允许不同 Agent 之间的动态通信和协同,使得系统能够灵活应对各种复杂任务。
扩展性:通过标准化的通信机制,A2A 协议支持多 Agent 系统的扩展,可以轻松添加新的 Agent 或服务。
任务管理:A2A 协议提供了丰富的任务状态管理功能,使得任务的执行过程更加透明和可控。
协同能力:A2A 协议促进了 Agent 之间的协作,使得多个 Agent 可以共同完成复杂的任务,提高系统的整体效率。
第四、总结
A2A 协议通过其灵活的通信机制和强大的任务管理功能,为不同 Agent 之间的协同工作提供了一个高效、透明的解决方案。它不仅解决了 Agent 之间的通信问题,还提升了多 Agent 系统的整体性能和扩展性。随着技术的不断发展,A2A 协议有望在更多领域得到广泛应用,推动 AI 技术的发展。
—4—
MCP vs Function Calling vs A2A 关系
第一、MCP ↔ Function Calling 关系:设计理念与应用场景的差异
尽管 MCP 和 Function Calling 都旨在促进大语言模型(LLM)与外部工具和服务的交互,但它们在设计理念和应用场景上存在显著差异,尤其是在可扩展性方面。
1、Function Calling 的局限性
Function Calling 由于缺乏统一标准,不同 LLM 需要各自的函数定义格式。如果有 M 个不同 LLM 应用和 N 个不同工具/服务,理论上可能需要实现 M×N 次重复的对接工作。此外,Function Calling 本身并不直接支持多步调用组合,大模型只能一次调用一个函数,获取结果后如果需调用下一个函数,需要由应用逻辑将结果馈入大模型下一轮对话,再触发下一个函数调用。虽然在原理上可以实现函数输出作为输入形成链条,但这一切需要开发者在应用层精心编排,大模型自身缺乏对跨调用流程的全局观。
2、MCP 的扩展性优势
MCP 的扩展性则通过统一的接口标准,将复杂的 M(个模型)×N(个外部工具对接)问题转化为 M+N 的问题。工具创建者只需为每个工具/系统实现一次 MCP Server,应用开发者只需为每个应用实现一次 MCP Client,各自遵循通用协议即可协同工作,扩展新功能的边际成本大幅降低。
第二、MCP ↔ A2A 关系:能力互补
那么,为什么在有了 MCP 之后,还需要 A2A 来协作不同 Agent 呢?对比 MCP 与 A2A,可以发现两者的关系更多是一种能力的互补:MCP 让 Agent 能够使用工具,而 A2A 让 Agent 能够与其他 Agent 协作。一个解决“做什么”,一个解决“与谁合作”。
背后的逻辑就像上班,有的同事(Agent)擅长研发汽车发动机,有的同事(Agent)擅长组装。所有人通过一个流水线串联共同完成一个项目,一定比一个同事(Agent)独自研发汽车,然后再组装并营销的效率更高。
第三、A2A ↔ Function Calling 关系:能力协同
A2A 可以支持 Agent 之间的通信,而每个 Agent 可以通过 Function Calling 调用外部工具。
这种结合可以实现复杂的任务分配和协作,提升系统的整体性能。
第四、未来趋势:技术融合
长期来看,我们可能会看到这三大通信机制(Function Calling、MCP、A2A)逐渐融合的趋势。不过,目前 OpenAI 和 Anthropic 尚未支持 A2A。这可能是因为,尽管大家在技术布道时都有自己的理念,但最终如何选择取决于商业决策。然而,从长期来看,技术融合之路势在必行。