项目背景
从kaggle 网上的数据源(Brutal Age)是一款风靡全球的SLG(策略)类型手机游戏。准确了解每个玩家的价值和产品道具使用效果,对游戏的广告投放策略和高效的运营活动具有重要意义,有助于给玩家带来更个性化的体验。
1.运用RFM模型对用户进行分层,精细化分析,通过时间序列的分析方法,对比新增和付费用户的占比,了解到付费率的只有2.4%的数据:针对如此的付费率:加强新手玩家的引导,增加前期奖励,改善渠道质量,减少低质量客户的注册。
2.运用假设检验的分析法,以及计算平均时长推导、通过业务流程以及核心指标的拆解对企业的流失用户进行归因分析,了解到该游戏流失极大、75%的用户平均时长不足5分钟:
3.通过运用ARPU和ARPPU的指标,类比同行业公司,了解到ARPU超过5元,可见此手游盈利水平状况良好,需要继续保持。
4.通过对用户游戏内的行为分析,了解到对木材这一类资源更高,且象牙资源很少,很可能用户没有意识到各个资源的用武之地造成的,应该加强对用户此方面的引导,完善战斗系统和规划游戏玩家的成长道路。
分析目的:
旨在了解该段时期内新注册用户质量以及游戏内消费偏向。
(一)每日用户新增用户分析