YOLOv11改进 | SPPF篇 | 2024最新AIFI模块改进特征金字塔网络(Transformer和YOLO的结合)

一、本文介绍

本文给大家带来是用最新的改进是RT-DETR模型中的AIFI模块间去替换YOLOv11中的SPPF。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR中的一些先进模块融入到YOLOv11往往能够达到一些特殊的效果,因为发论文并不一定要提高精度轻量化模型也是一个方向本文含yolov11和RT-DETR的结合文件,配合RT-DETR检测头)。

专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

  一、本文介绍

二、RT-DETR的AIFI框架原理

2.1 AIFI的基本原理

三、AIFI的完整代码

 四、手把手教你添加AIFI模块

### YOLOv8中SPPF模块改进 #### SPPFCSPC 替换 SPPF 模块YOLOv8中,通过引入更先进的空间金字塔池化(SPP)结构来替代原有的SPPF模块可以显著提高模型性能。具体来说,采用SPPFCSPC作为新的构建单元被证明是一个有效的策略[^1]。 ```python import torch.nn as nn class SPPFCSPC(nn.Module): def __init__(...): # 参数省略 super().__init__() ... def forward(self, x): ... ``` 此方法不仅继承了传统SPP层的优点——即增强感受野并捕获多尺度特征的能力,而且进一步优化了网络架构设计,在保持较高精度的同时降低了计算复杂度。 #### Focal Modulation 替代方案 另一种值得注意的是利用焦点调制(FocalModulation)技术取代标准版SPPF的做法。该方案旨在解决现有SPP机制存在的局限性,比如当面对极端比例的目标物体时可能出现的效果不佳等问题[^2]。 这种方法能够在几乎不额外消耗资源的情况下获得更好的识别效果,特别适用于那些对实时性功耗敏感的应用场景,如移动终端或嵌入式视觉系统中的目标检测任务。 #### SPPCSPC 的应用 除了上述两种创新外,还有研究指出将来自YOLOv7的成功经验移植到最新版本上也是一种可行的选择之一。特别是其中提到的SPPCSPC组件,它同样基于经典的空间金字塔理念进行了适当调整,从而实现了更高的效率更强的数据处理能力尽管这可能会带来一些额外的成本开销[^3]。 综上所述,针对YOLOv8内核里的SPPF部分所做的这些改动都体现了研究人员不断追求卓越的精神以及对于实际需求变化所作出快速响应的态度。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值