YOLOv11改进 | 添加注意力机制篇 | 2024最新适用于遥感目标检测的注意力机制CAA二次创新C2PSA机制(全网独家首发)

一、本文介绍

本文给大家带来的最新改进机制是PKINet网络提出的CAA注意力机制, 其首先通过平均池化和一个 1x1 卷积获取局部区域的特征。接着应用两个深度分离的条状卷积,一个是水平方向,另一个是垂直方向。这种条状卷积可以模拟大核卷积,但计算成本低,轻量化。这种配置在捕捉桥梁等拉长的物体结构上特别有效。本文将其用于二次创新PSA和另外一种使用方式,本文内容为个人整理,文章内含有代码 + 添加教程 + 使用方式。

欢迎大家订阅我的专栏一起学习YOLO! 

专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

一、本文介绍

二、原理介绍

三、核心代码

四、添加教程

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件1

### 实现和应用注意力机制YOLOv5 #### 1. CA注意力机制简介 CA(Coordinate Attention)是一种专门设计用于增强模型对坐标信息理解力的注意力机制。该方法能够有效提升模型对于物体的方向性和位置感悟能力,在处理具有特定空间分布模式的任务时表现出色[^3]。 #### 2. 集成CA注意力模块至YOLOv5 要在YOLOv5中加入CA注意力层,主要涉及修改网络架构文件以及训练配置参数两方面的工作: ##### 修改网络定义 首先需要下载官方提供的`yolov5s.yaml`或其他版本的基础配置文件作为模板。接着按照如下方式编辑其中的部分内容来插入CA单元: ```yaml # yolov5s_ca.yaml: Customized YOLOv5 with CA attention module. backbone: ... [[-1, BottleneckCSP], [-1, CAA]] # Add Coordinate Attention after CSP block ... head: ... ``` 上述代码片段展示了如何在瓶颈层之后添加一个新的CAA组件实例。这一步骤使得整个骨干网能够在更深层次上利用图像的空间关系特征。 ##### 调整超参设置 完成网络结构调整后,还需适当调整一些影响学习过程的关键变量以适应新引入的功能特性。比如可以考虑增大batch size、延长epoch数量或是微调learning rate等策略来促进更好的收敛效果。 ##### 编写自定义层类 由于PyTorch并没有内置支持CA操作符,因此还需要编写相应的Python类以便顺利加载并运行此功能。下面给出了一种可能实现方案: ```python import torch.nn as nn class CoordAtt(nn.Module): def __init__(self, inp_channels=64, reduction_ratio=16): super(CoordAtt, self).__init__() mid_channel = max(8, int(inp_channels / reduction_ratio)) self.conv_h = nn.Conv2d(in_channels=inp_channels, out_channels=mid_channel, kernel_size=(1,7), padding=(0,3)) self.conv_w = nn.Conv2d(in_channels=inp_channels, out_channels=mid_channel, kernel_size=(7,1), padding=(3,0)) self.fc_x = nn.Linear(mid_channel * 2, inp_channels) def forward(self,x): n,c,h,w=x.size() x_h=self.conv_h(x).mean(-1).view(n,-1) x_w=self.conv_w(x).mean(-2).view(n,-1) y=torch.cat([x_h,x_w],dim=-1) y=self.fc_x(y).sigmoid().reshape(n,c,1,1)*x return y ``` 这段脚本定义了一个名为`CoordAtt`的新类别,实现了基本坐标的注意计算逻辑,并将其应用于输入张量之上。 #### 3. 训练与评估改进后的YOLOv5 经过以上改造得到的新版YOLOv5应该可以在更多样化的应用场景下取得更加优异的成绩。当然实际表现还会受到数据集质量、硬件条件等多种因素的影响,所以在正式部署前建议先进行全面测试验证其稳定性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值