YOLOv11改进 | NECK篇 | 引入CAA注意力构建C2PSA_CAA

1.CAA介绍

 

1.1 摘要

 摘要:遥感图像中的目标检测面临着越来越多的挑战,包括目标尺度的变化和背景的多样性。先前的方法试图通过扩大骨干的空间感受野来解决这些挑战,无论是通过大核卷积还是扩张卷积。然而,前者通常会引入相当大的背景噪声,而后者则会产生过于稀疏的特征表示。在本文中,我们引入了多核初始网络(PKINet)来应对上述挑战。PKINet采用无膨胀的多尺度卷积核来提取不同尺度的对象特征并捕获局部上下文。此外,一个上下文锚注意(CAA)模块并行引入捕获远程上下文信息。这两个组件共同工作,以提高PKINet在四个具有挑战性的遥感检测基准上的性能,即DOTA-v1.0,DOTA-v1.5,HRSC 2016和DIOR-R。

官方论文地址:https://arxiv.org/pdf/2403.06258

官方代码地址:GitHub - NUST-Machine-Intelligence-Laboratory/PKINet

1.2 简单描述

       Context Anchor Attention (CAA) 模块用于捕获长距离的上下文信息。CAA 模块的核心思想是通过使用平均池化(average pooling)和1D条带卷积(1x1 convolution),来捕捉远距离像素之间的关系,并增强中心区域的特征。这种设计旨在帮助模型更好地理解和利用图像中不同位置之间的相互关系,从而提高对复杂场景的理解能力。

          具体来说,CAA模块首先通过平均池化操作来获取局部区域的统计特征,然后通过1D条带卷积进一步提取和强化这些特征。这种设计有助于模型关注到图像中的关键区域,还能通过跨区域的特征融合,增强模型的泛化能力和性能。此外,通过采用深度可分离卷积(depth-wise strip convolutions),CAA模块在保持计算效率的同时,实现了与较大卷积核类似的效果,这对于遥感图像检测任务中的实时性和准确性要求尤为重要。

          综上CAA模块通过结合局部和全局的上下文信息,有效地提升了遥感对象检测的性能和准确性。

1.3 模块结构

2.SpatialGroupEnhance代码


class CAA(nn.Module):
    def __init__(self, ch, h_kernel_size=11, v_kernel_size=11) -> None:
        super().__init__()
 
        self.avg_pool = nn.AvgPool2d(7, 1, 3)
        self.conv1 = Conv(ch, ch)
        self.h_conv = nn.Conv2d(ch, ch, (1, h_kernel_size), 1, (0, h_kernel_size // 2), 1, ch)
        self.v_conv = nn.Conv2d(ch, ch, (v_kernel_size, 1), 1, (v_kernel_size // 2, 0), 1, ch)
        self.conv2 = Conv(ch, ch)
        self.act = nn.Sigmoid()
 
    def forward(self, x):
        attn_factor = self.act(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))
        return attn_factor * x
 
class C2PSA_CAA(nn.Module):
    """
    C2PSA module with attention mechanism for enhanced feature extraction and processing.
    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)
    """
 
    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
 
        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
 
    def forward(self, x):
        """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = self.m(b)
        return self.cv2(torch.cat((a, b), 1))

3.配置文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
 
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA_CAA, [1024,1024]] # 这里输入输出通道根据你使用的模型进行计算,如果你使用的yolov11n就是(1024*0.25,1024*0.25),如果是s就*0.5
 
# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13
 
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
 
  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.模型训练代码

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO


if __name__ == '__main__':n
    model = YOLO(r'?/ultralytics/cfg/mondels/11/yolo11n.yaml')//将?替换为yaml文件所在位置的绝对路径,下面data同理
    model.train(data=r'?/ultralytics/cfg/datasets/coco.yaml',
                cache=False,
                imgsz=640,
                epochs=300,
                single_cls=False,  # 是否是单类别检测
                batch=16,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD',
                amp=True,
                project='runs/train',
                name='exp',
                )

5.模型测试代码

from ultralytics import YOLO

model = YOLO('?/runs/train/exp/weights/best.pt')//将?替换为训练结果权重文件的绝对路径

 
# Train the model
results = model.val(data="coco.yaml",  imgsz=640, split='test')//只对数据集中的yaml文件中名字叫test文件夹下的数据集测试

6.总结

以上就是该模块添加到yolov11中的方法,你可以加在yolov11的任何位置(只要他能跑起来,你可以合理的解释它为什么出现这个位置)。

跑实验的过程是枯燥乏味的,希望我远在天边的朋友你能耐得住寂寞,早日跑出自己想要的结果!!!

### YOLOv11 Slim-Neck 技术细节和实现方法 #### 背景与动机 为了提高YOLO系列模型在边缘设备上的实时性和准确性,引入了Slim-Neck (SNs) 结构。这种结构旨在通过优化网络架构来平衡计算资源消耗与检测精度之间的关系[^1]。 #### Slim-Neck 的核心概念 Slim-Neck 是基于 GSConv 设计的一种新型瓶颈层,它能够有效地减少参数数量并加速推理过程而不牺牲太多性能。具体来说: - **通道重组**:通过对特征图的不同部分应用不同类型的卷积操作(如深度可分离卷积),可以更灵活地控制每层的信息流。 - **多尺度融合机制**:利用跨层次连接的方式增强低分辨率特征表示的能力,从而更好地捕捉到图像中的细粒度信息。 #### 实现步骤概述 以下是针对 YOLOv11 添加 Slim-Neck 组件的主要改动点: ##### 修改配置文件 首先,在 `yolov11.yaml` 配置文件中定义新加入的 SN 模块及其超参设置。例如: ```yaml backbone: ... neck: type: 'SlimNeck' out_channels: [256, 512, 1024] head: ... ``` ##### 编写 Python 类 接着创建一个新的Python类用于实例化Slim-Neck对象,并将其集成至整个框架内。这里给出一个简化版的例子: ```python import torch.nn as nn class SlimNeck(nn.Module): def __init__(self, in_channels=[256, 512, 1024], mid_channels=256): super(SlimNeck, self).__init__() # 定义各阶段的具体组件... def forward(self, x): """前向传播逻辑""" pass def build_slim_neck(cfg): return SlimNeck(**cfg['neck']) ``` ##### 更新训练脚本 最后调整主程序入口处的相关调用语句,确保能正确加载自定义颈部结构参与迭代更新流程: ```python from models import yolov11, build_slim_neck if __name__ == '__main__': model = yolov11() neck = build_slim_neck(model.cfg) model.add_module('neck', neck) trainer.train(model=model, ...) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值