hibernate中的optimistic-lock(...

注意:要在user表中增加一个字段:version int  
User.hbm.xml

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<!--
    Mapping file autogenerated by MyEclipse Persistence Tools
-->
<hibernate-mapping>
<class name="com.shiryu.otm.User" table="user" dynamic-update="true" dynamic-insert="true" optimistic-lock="version" >
    <id name="id" type="java.lang.Integer">
      <column name="id" />
      <generator class="native" />
    </id>
    <!-- 使用乐观锁 -->
    <version name="version" column="version" type="java.lang.Integer" />

    <property name="name" type="java.lang.String">
      <column name="name" length="50" />
    </property>
    <property name="age" type="java.lang.Integer" column="age" />

    <set name="addresses" table="address" cascade="all" order-by="address desc">

      <key column="user_id"></key>
      <one-to-many class="com.shiryu.otm.Address" />
    </set>
</class>
</hibernate-mapping>




OptimisticlLockingTest.java

package com.shiryu.otm;

import java.util.List;

import org.hibernate.Criteria;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.criterion.Expression;

//乐观锁 Optimistic Lock
public class OptimisticLockingTest {
    public static void main(String[] args) {
        SessionFactory sessionFactory = new Configuration().configure().buildSessionFactory();
        Session session = sessionFactory.openSession();
        Criteria criteria = session.createCriteria(User.class);
        criteria.add(Expression.eq("name", "zhaiyu"));

        List l = criteria.list();

        User user = (User) l.get(0);
        Transaction tr = session.beginTransaction();
        user.setAge(21);// 更新age字段
        tr.commit();
        session.close();
        // 每次对数据库进行更新时,数据库中version都在递增

        // 现在我们尝试在tr.commit之前,启动另外一个Session,对zhaiyu用户进行操作,模拟并发时的情景

        Session session1 = sessionFactory.openSession();
        Criteria criteria1 = session1.createCriteria(User.class);
        criteria1.add(Expression.eq("name", "zhaiyu"));

        Session session2 = sessionFactory.openSession();
        Criteria criteria2 = session2.createCriteria(User.class);
        criteria2.add(Expression.eq("name", "zhaiyu"));

        List userList1 = criteria1.list();
        List userList2 = criteria2.list();

        User user1 = (User) userList1.get(0);
        User user2 = (User) userList2.get(0);

        Transaction tr1 = session1.beginTransaction();
        Transaction tr2 = session2.beginTransaction();

        user1.setAge(26);// 更新age字段
        tr1.commit();

        user2.setAge(44);// 更新age字段
        tr2.commit();// 系统出现StaleObjectStateException异常,并指出版本检测失败
    }
}

### 关于 SuperGLUE 的澄清 SuperGLUE 并不是一个用于计算机视觉中的特征匹配算法或库,而是一个自然语言处理 (NLP) 领域的基准数据集集合[^2]。它的主要目标是对语言理解能力进行严格评估,并推动通用语言理解系统的进步。 具体来说,SuperGLUE 是 GLUE 基准一个升级版本,包含了更加复杂的任务和更具挑战性的数据集。这些任务涵盖了多种语言理解场景,例如语义相似度判断、情感分析、问答等。通过这些任务,研究者可以全面评估模型语言理解和推理能力。 如果提到的是 **SuperGlue** 而不是 **SuperGLUE**,那么这可能是指一种完全不同的技术——即由 DeTone 等人在 2020 年提出的名为 SuperGlue 的计算机视觉方法。这是一种专门针对图像特征匹配的任务设计的神经网络框架。它可以学习如何将一组局部描述符(local descriptors)与另一组对应关系关联起来,从而完成诸如三维重建、姿态估计等任务。此方法的具体细节可以在论文《Superglue: Learning Feature Matching With Graph Neural Networks》中找到[^3]。 因此需要注意区分大小写以及上下文环境,“S”大写的 SuperGLUE 属于 NLP 领域;而全小写字母 superglue 或首字母大写的 SuperGlue 则属于 CV (Computer Vision)领域。 ```python import torch from superglue.models import SuperGlue # 加载预训练模型 config = {'weights': 'outdoor'} superglue = SuperGlue(config) # 输入两个点云图的特征向量 data = { 'keypoints0': keypoints_list[0], 'keypoints1': keypoints_list[1], 'descriptors0': desc_list[0], 'descriptors1': desc_list[1], 'scores0': score_list[0], 'scores1': score_list[1], 'image0': image_tensor[0], 'image1': image_tensor[1] } with torch.no_grad(): matches = superglue(data) print(matches['matches0']) ``` 上述代码片段展示了如何使用 SuperGlue 库来进行两幅图片之间的关键点匹配操作。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值