lightgbm模型fine-tune微调

本文深入探讨了如何使用LightGBM进行模型微调,通过设置`init_model`参数实现从现有模型开始的增量训练。讲解了`lgb.train`函数的关键参数,如`keep_training_booster=True`,以保持训练过程中的 Booster,允许模型继续学习而不会丢失之前的状态。此外,还介绍了早停策略和评估集的有效使用,以优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.参数input_model置为需要微调的模型,这种方式会额外增加n棵树继续学习;

2.lgb.train(init_model=微调所需模型,keep_training_booster=True)

model = lgb.train(params,
                  lgb_train,
                  num_boost_round=1000,
                  valid_sets=lgb_eval,
                  feature_name=x_cols,
                  early_stopping_rounds=10,
                  verbose_eval=False,
                  init_model=model, # 如果init_model不为None,那么就是在init_model基础上接着训练
                  keep_training_booster=True) # 增量训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值