作者:Benjamin Ba
链接:https://www.zhihu.com/question/19790803/answer/29290524
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
链接:https://www.zhihu.com/question/19790803/answer/29290524
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
架构的话有很多尝试,传统的Oracle和 Postgre用的比较广泛, 很多架构在此基础上同时应用 NoSQL。因为大多数LBS并不涉及更复杂的空间数据存储,例如多边形或者三维数据,因此,大多数generic的数据库架构都可以应用。但是,从产品核心的设计以及发展来看,如果像FourSquare(4SQ)进行数据挖掘并提供收费的数据分析服务,那么基于空间的利用文件数据结构,以空间POI为基础的NoSQL,是比较好的选择。除了其他人介绍的很多LBS,比如街旁和4SQ,应用的Mongo DB, 还有Couch DB, 根据之前来讲课的澳洲政府的一个大型空间数据库项目(集成了多种现有的空间数据库)的构架师介绍,这个项目应用了Couch DB。虽然理论上Graphic的NoSQL对于存储空间数据也有很大优势,但是毕竟相对不成熟,所以实际应用中的NoSQL还是以doc结构的Mongo和Couch为主。
如何提高命中率关键是对存储的空间数据认识程度和对用户query的类型的统计分析,并在此基础上开发出适合的算法,建立缓存或者对传统的空间索引进行组合,例如应用一些refine-filter策略。空间数据的索引与传统的索引不同,但是又部分基于传统索引的基础之上的。这里只介绍一些简单的空间索引入门算法,最后简单谈一下缓存建立的策略。
-----------------------------------索引------------------------------------------------------------------------
----简略介绍一下作为空间索引基础的一般索引,并由此为基础应用部分B tree思想并组合其他一些方法进行空间索引。
B-Tree/B+Tree 定义的话学过数据库应该都了解。
这是常用的一般性索引。从0-100 这一百个数找到40这个,可以用过100 -> (0-50), (51-100) 在(1-50)里面查询,然后再从(1-25)(26-50)里面的(26-50)里面查询。通过它的平衡性,每次减少一半的数据,所以查询时间是O(log n)。1->100是一个一维的线性关系。
<img src="https://i-blog.csdnimg.cn/blog_migrate/d6656976983e3bcd086b8bcd2afaa181.png" data-rawwidth="383" data-rawheight="390" class="content_image" width="383">B-Tree 存储的插入方式 B-Tree 存储的插入方式
(Worboys and Duckham, GIS: A Computing Perspective , p229)
----从一维到二维(当然也有三维但是那个更复杂,不在这里讨论之列)
因为空间的每个object的首先是表现在二维空间的点,线或者多边形。这个帖子因为问的是LBS,因此主要的目的是存储points的POI(Points of interesting)以及它附属的属性。二维空间的索引为什么传统的B tree 不可以呢?看下图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/f485cecf4e9f1c293e7a66ae5f88387c.png" data-rawwidth="350" data-rawheight="636" class="content_image" width="350">
(Worboys and Duckham, GIS: A Computing Perspective , p230)
这14个POI的信息在上表,在空间中他们如下面的图。请注意点1和点2在一维空间上是相邻的,而在二维空间,1和5却是距离最近的。因此线性的索引1-2-3-4-5无法满足空间里1-5的关系。举个例子,你要查询哪个POI与点1在同一个10*10的区域,在这个query中,你通过1-2-3-4-5...在用B tree分割的方式无法快速返回结果。那么我们是不是应该根据空间的远近或者相似性来排序呢?如何做呢?见下面。
------二维的顺序。
好的二维排序方法应该兼顾顺序和空间远近的相对关系,就是上个例子中点1和5的顺序应该是点1和2,这样就保存了空间相似行和顺序的正相关。
可以应用的空间order 总结下来有如下:
<img src="https://i-blog.csdnimg.cn/blog_migrate/8e44a512d59831229e225a5097704bc5.png" data-rawwidth="172" data-rawheight="539" class="content_image" width="172">(Hanan Samet, Foundations of Multidimensional and Metric Data Structures,p199) (Hanan Samet, Foundations of Multidimensional and Metric Data Structures,p199)
这些方式有利有弊,例如图a,第一行最右边的点8和第二行最右边的点16空间关系很近,但是,序号却相差8。但是,在同一行空间关系保持的与序号相关性保持的很好。
----栅格结构
从以上的order中发现,这都是基于栅格结构把空间分割成栅格,从而编号成为index的。栅格的存储点的空间object的index,常用的方式是Region Quadtrees。 什么是Quadtrees的存储方式呢?
<img src="https://i-blog.csdnimg.cn/blog_migrate/bb1819ba45eec7306bbc755bf5f78bc4.png" data-rawwidth="547" data-rawheight="339" class="origin_image zh-lightbox-thumb" width="547" data-original="https://pic4.zhimg.com/abc2f74fc04bf98c83e81c76d310afb7_r.jpg">
(Worboys and Duckham, GIS: A Computing Perspective , p236)
简单来说,在level 1 把空间分成leve1(0,1,2,3)其中只有0,1,3有数据,其中level 1的1和3都被占满了,就不在继续分割了。然后在level2再把level1的0分成(0,1,2,3),其中只有1,3有数据,其中1已经被占满了,就不用再分割。如此类推,所有的数据都存储到 (01,030,031,1,3)。
----结合以上介绍的方法组合起来来拿作为空间index的算法
1. Point Quadtree
见图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/f9d2653552efd4b5b91f306f41df55bb.png" data-rawwidth="436" data-rawheight="239" class="origin_image zh-lightbox-thumb" width="436" data-original="https://pic3.zhimg.com/9381e102a103d6ece992dda3bebc9b1e_r.jpg">
(Worboys and Duckham, GIS: A Computing Perspective , p243)
其中点1(x坐标,y坐标,西北,东北,西南,东南,数据),然后在点1的东北下(就是上图中b的第二个分支),存储点2(x坐标,y坐标,西北,东北,西南,东南,数据),然后再在点1的东南(上图中c得第四个分支下)存储点3(x坐标,y坐标,西北,东北,西南,东南,数据)。以此类推。
2.2D-Tree
与Point Quadtree类似。但是它不把空间分隔成4个部分而是两个。
如图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/1d80acfd6b84558a55f9ae637d698f12.png" data-rawwidth="440" data-rawheight="273" class="origin_image zh-lightbox-thumb" width="440" data-original="https://pic4.zhimg.com/57edb540a518e3fcb4a0da0a63bfef0f_r.jpg">(Worboys and Duckham, GIS: A Computing Perspective , p245) (Worboys and Duckham, GIS: A Computing Perspective , p245)
其中点1(x坐标,y坐标,左,右,数据),点2(x坐标,y坐标,左,右,数据)在1的右边,因此2存储在1的第二个分支下。以此类推。
当然,更复杂的地理信息数据库中,线,多边形和三维objects都会有存储,因此他们的index方法也不同于点。一般来说,越复杂的object index的方法也越复杂,
-----------------------------------缓存------------------------------------------------------------------------
下面简单说明一下缓存的建立思路。这个无法进行详细说明,因为往往都是要根据业务需求进行设计的。简单流程是分析业务主流的query类型-》根据query类型设计缓存。只有理解query类型,才能理解查询过程中应用的算法。这么做目的有2个:1是尽量避免用计算量大耗时长的算法来取得query结果,2是如果避免不了就进行预计算。
所以首先是要理解空间query的类型,按照计算量从小到大顺序排列的query类型是。
1.空间选择查询.
例如,找到距离火车站200米以内的5星评价的饭店。
2.最近邻居查询.
例如,距离火车站最近的2个饭店/火车站到北京饭店的驾车距离是多少
3.拓扑关系查询。
例如,王府井是否在北京市。
这里如果都是LBS的话, 其实简单很多,因为点与线或者多边形的距离和拓扑结构的算法是很简单的,而多边形和多边形就复杂得多。
假设,LBS的query,是大众点评式的。用户最多的query应该是类似:
距离我现在的位置最近的的港式餐厅按评价排序结果。
这个是一个典型的空间选择查询。
那么,缓存的策略可以按照用户集中地地区,预先查询出一些常用的餐厅类型的文件,做成缓存。
相对于其他的地理信息查询,LBS的缓存还是好做的。
大家可以感受一下这个query:找到所有国内的城市,它最近的河流全部是在这个城市所在的省之外。
这个query涉及了线和多边形的拓扑结构查询(省之外)和最近邻居查询(最近的河流)的组合查询,
如果用户都是这种query,那么做缓存的策略人就要蛋疼了!!!!具体操作就要考虑预先计算省的多边形的最小bounding box了。之后这里涉及比较复杂的缓存策略就省略..写起来就不是几句话能讲清楚得了。
----------------------------------------------------------------------------------------------------------------
最后感谢我的数据库老师Matt Duckham,也就是多次截取图片的原书作者。
如何提高命中率关键是对存储的空间数据认识程度和对用户query的类型的统计分析,并在此基础上开发出适合的算法,建立缓存或者对传统的空间索引进行组合,例如应用一些refine-filter策略。空间数据的索引与传统的索引不同,但是又部分基于传统索引的基础之上的。这里只介绍一些简单的空间索引入门算法,最后简单谈一下缓存建立的策略。
-----------------------------------索引------------------------------------------------------------------------
----简略介绍一下作为空间索引基础的一般索引,并由此为基础应用部分B tree思想并组合其他一些方法进行空间索引。
B-Tree/B+Tree 定义的话学过数据库应该都了解。
这是常用的一般性索引。从0-100 这一百个数找到40这个,可以用过100 -> (0-50), (51-100) 在(1-50)里面查询,然后再从(1-25)(26-50)里面的(26-50)里面查询。通过它的平衡性,每次减少一半的数据,所以查询时间是O(log n)。1->100是一个一维的线性关系。
<img src="https://i-blog.csdnimg.cn/blog_migrate/d6656976983e3bcd086b8bcd2afaa181.png" data-rawwidth="383" data-rawheight="390" class="content_image" width="383">B-Tree 存储的插入方式 B-Tree 存储的插入方式
(Worboys and Duckham, GIS: A Computing Perspective , p229)
----从一维到二维(当然也有三维但是那个更复杂,不在这里讨论之列)
因为空间的每个object的首先是表现在二维空间的点,线或者多边形。这个帖子因为问的是LBS,因此主要的目的是存储points的POI(Points of interesting)以及它附属的属性。二维空间的索引为什么传统的B tree 不可以呢?看下图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/f485cecf4e9f1c293e7a66ae5f88387c.png" data-rawwidth="350" data-rawheight="636" class="content_image" width="350">
(Worboys and Duckham, GIS: A Computing Perspective , p230)
这14个POI的信息在上表,在空间中他们如下面的图。请注意点1和点2在一维空间上是相邻的,而在二维空间,1和5却是距离最近的。因此线性的索引1-2-3-4-5无法满足空间里1-5的关系。举个例子,你要查询哪个POI与点1在同一个10*10的区域,在这个query中,你通过1-2-3-4-5...在用B tree分割的方式无法快速返回结果。那么我们是不是应该根据空间的远近或者相似性来排序呢?如何做呢?见下面。
------二维的顺序。
好的二维排序方法应该兼顾顺序和空间远近的相对关系,就是上个例子中点1和5的顺序应该是点1和2,这样就保存了空间相似行和顺序的正相关。
可以应用的空间order 总结下来有如下:
<img src="https://i-blog.csdnimg.cn/blog_migrate/8e44a512d59831229e225a5097704bc5.png" data-rawwidth="172" data-rawheight="539" class="content_image" width="172">(Hanan Samet, Foundations of Multidimensional and Metric Data Structures,p199) (Hanan Samet, Foundations of Multidimensional and Metric Data Structures,p199)
这些方式有利有弊,例如图a,第一行最右边的点8和第二行最右边的点16空间关系很近,但是,序号却相差8。但是,在同一行空间关系保持的与序号相关性保持的很好。
----栅格结构
从以上的order中发现,这都是基于栅格结构把空间分割成栅格,从而编号成为index的。栅格的存储点的空间object的index,常用的方式是Region Quadtrees。 什么是Quadtrees的存储方式呢?
<img src="https://i-blog.csdnimg.cn/blog_migrate/bb1819ba45eec7306bbc755bf5f78bc4.png" data-rawwidth="547" data-rawheight="339" class="origin_image zh-lightbox-thumb" width="547" data-original="https://pic4.zhimg.com/abc2f74fc04bf98c83e81c76d310afb7_r.jpg">
(Worboys and Duckham, GIS: A Computing Perspective , p236)
简单来说,在level 1 把空间分成leve1(0,1,2,3)其中只有0,1,3有数据,其中level 1的1和3都被占满了,就不在继续分割了。然后在level2再把level1的0分成(0,1,2,3),其中只有1,3有数据,其中1已经被占满了,就不用再分割。如此类推,所有的数据都存储到 (01,030,031,1,3)。
----结合以上介绍的方法组合起来来拿作为空间index的算法
1. Point Quadtree
见图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/f9d2653552efd4b5b91f306f41df55bb.png" data-rawwidth="436" data-rawheight="239" class="origin_image zh-lightbox-thumb" width="436" data-original="https://pic3.zhimg.com/9381e102a103d6ece992dda3bebc9b1e_r.jpg">
(Worboys and Duckham, GIS: A Computing Perspective , p243)
其中点1(x坐标,y坐标,西北,东北,西南,东南,数据),然后在点1的东北下(就是上图中b的第二个分支),存储点2(x坐标,y坐标,西北,东北,西南,东南,数据),然后再在点1的东南(上图中c得第四个分支下)存储点3(x坐标,y坐标,西北,东北,西南,东南,数据)。以此类推。
2.2D-Tree
与Point Quadtree类似。但是它不把空间分隔成4个部分而是两个。
如图:
<img src="https://i-blog.csdnimg.cn/blog_migrate/1d80acfd6b84558a55f9ae637d698f12.png" data-rawwidth="440" data-rawheight="273" class="origin_image zh-lightbox-thumb" width="440" data-original="https://pic4.zhimg.com/57edb540a518e3fcb4a0da0a63bfef0f_r.jpg">(Worboys and Duckham, GIS: A Computing Perspective , p245) (Worboys and Duckham, GIS: A Computing Perspective , p245)
其中点1(x坐标,y坐标,左,右,数据),点2(x坐标,y坐标,左,右,数据)在1的右边,因此2存储在1的第二个分支下。以此类推。
当然,更复杂的地理信息数据库中,线,多边形和三维objects都会有存储,因此他们的index方法也不同于点。一般来说,越复杂的object index的方法也越复杂,
-----------------------------------缓存------------------------------------------------------------------------
下面简单说明一下缓存的建立思路。这个无法进行详细说明,因为往往都是要根据业务需求进行设计的。简单流程是分析业务主流的query类型-》根据query类型设计缓存。只有理解query类型,才能理解查询过程中应用的算法。这么做目的有2个:1是尽量避免用计算量大耗时长的算法来取得query结果,2是如果避免不了就进行预计算。
所以首先是要理解空间query的类型,按照计算量从小到大顺序排列的query类型是。
1.空间选择查询.
例如,找到距离火车站200米以内的5星评价的饭店。
2.最近邻居查询.
例如,距离火车站最近的2个饭店/火车站到北京饭店的驾车距离是多少
3.拓扑关系查询。
例如,王府井是否在北京市。
这里如果都是LBS的话, 其实简单很多,因为点与线或者多边形的距离和拓扑结构的算法是很简单的,而多边形和多边形就复杂得多。
假设,LBS的query,是大众点评式的。用户最多的query应该是类似:
距离我现在的位置最近的的港式餐厅按评价排序结果。
这个是一个典型的空间选择查询。
那么,缓存的策略可以按照用户集中地地区,预先查询出一些常用的餐厅类型的文件,做成缓存。
相对于其他的地理信息查询,LBS的缓存还是好做的。
大家可以感受一下这个query:找到所有国内的城市,它最近的河流全部是在这个城市所在的省之外。
这个query涉及了线和多边形的拓扑结构查询(省之外)和最近邻居查询(最近的河流)的组合查询,
如果用户都是这种query,那么做缓存的策略人就要蛋疼了!!!!具体操作就要考虑预先计算省的多边形的最小bounding box了。之后这里涉及比较复杂的缓存策略就省略..写起来就不是几句话能讲清楚得了。
----------------------------------------------------------------------------------------------------------------
最后感谢我的数据库老师Matt Duckham,也就是多次截取图片的原书作者。
(1) 空间索引(Spatial Index)。 主流数据库(MySQL 5.0+、Oracle、PostgreSQL、SQL Server) 都在不同程度上支持欧空间索引,其中有一个类型就是 Point,可以用于存储 POI 的经纬度。 至于检索效率的提高,可以采用数据库厂家提供的 OpenGIS 函数,比如…
显示全部
(1)
空间索引(Spatial Index)。
主流数据库(MySQL 5.0+、Oracle、PostgreSQL、SQL Server) 都在不同程度上支持欧空间索引,其中有一个类型就是 Point,可以用于存储 POI 的经纬度。
至于检索效率的提高,可以采用数据库厂家提供的 OpenGIS 函数,比如 DISTANCE 什么的。
(2)
即使不支持空间索引也没关系,传统的坐标存储也可以实现,会稍微复杂点,同时在经纬度上建立好复合索引。
空间索引(Spatial Index)。
主流数据库(MySQL 5.0+、Oracle、PostgreSQL、SQL Server) 都在不同程度上支持欧空间索引,其中有一个类型就是 Point,可以用于存储 POI 的经纬度。
至于检索效率的提高,可以采用数据库厂家提供的 OpenGIS 函数,比如 DISTANCE 什么的。
(2)
即使不支持空间索引也没关系,传统的坐标存储也可以实现,会稍微复杂点,同时在经纬度上建立好复合索引。