理解DALL·E 2, Stable Diffusion和 Midjourney工作原理

原文:理解DALL·E 2, Stable Diffusion和 Midjourney的工作原理 - 知乎

【者按:随着AIGC的兴起,各位小伙伴们对文生图工具DALL-E 2、Stable Diffusion和Midjourney一定并不陌生。本期IDP Inspiration,小白将和大家一同走进这三者背后的技术原理,一探究竟。

以下是译文,Enjoy!】

作者 | Arham Islam

编译 | 岳扬

在过去的几年里,人工智能(AI)取得了极大的进展,而AI的新产品中有AI图像生成器。这是一种能够将输入的语句转换为图像的工具。文本转图像的AI工具有许多,但最突出的就属DALL-E 2、Stable Diffusion和Midjourney了。

01 DALL·E 2及其背后的技术

DALL-E 2由OpenAI开发,它通过一段文本描述生成图像。其使用超过100亿个参数训练的GPT-3转化器模型,能够解释自然语言输入并生成相应的图像。

一幅描述篮球运动员灌篮的油画,具有星云爆炸的效果 - 图片由DALLE 2创作

DALL-E 2主要由两部分组成——将用户输入转换为图像的表示(称为Prior),然后是将这种表示转换为实际的照片(称为Decoder)。

Source: https://www.youtube.com/watch?v=F1X4fHzF4mQ

其中使用到的文本和图像嵌入来自另一个叫做CLIP(对比语言-图像预训练)的网络,这也是由OpenAI研发的。CLIP是一种神经网络,为输入的图像返回最佳的标题。它所做的事情与DALL-E 2所做的相反——它是将图像转换为文本,而DALL-E 2是将文本转换为图像。引入CLIP的目的是为了学习物体的视觉和文字表示之间的联系。

CLIP - 为图像返回最佳的文本

DALL-E 2的工作是训练两个模型。第一个是Prior,接受文本标签并创建CLIP图像嵌入。第二个是Decoder,其接受CLIP图像嵌入并生成图像。模型训练完成之后,推理的流程如下:

  • 输入的文本被转化为使用神经网络的CLIP文本嵌入。
  • 使用主成分分析(Principal Component Analysis)降低文本嵌入的维度。
  • 使用文本嵌入创建图像嵌入。
  • 进入Decoder步骤后,扩散模型被用来将图像嵌入转化为图像。
  • 图像被从64×64放大到256×256,最后使用卷积神经网络放大到1024×1024。

02. Stable Diffusion及其技术

Stable Diffusion是一个文转图的模型,其使用了CLIP ViT-L/14文本编码器,能够通过文本提示调整模型。它在运行时将成像过程分离成“扩散 (diffusion)”的过程——从有噪声的情况开始,逐渐改善图像,直到完全没有噪声,逐步接近所提供的文本描述。

一个可以看到埃菲尔铁塔的皮卡丘高级餐厅 - 图片由Stable Diffusion生成

Stable Diffusion是基于Latent Diffusion Model(LDM)的,LDM是一款顶尖的文转图合成技术。在了解LDM的工作原理之前,让我们先看看什么是扩散模型以及为什么我们需要LDM。

扩散模型(Diffusion Models, DM)是基于Transformer的生成模型,它采样一段数据(例如图像)并随着时间的推移逐渐增加噪声,直到数据无法被识别。该模型尝试将图像回退到原始形式,在此过程中学习如何生成图片或其他数据。

DM存在的问题是强大的DM往往要消耗大量GPU资源,而且由于序列化评估(Sequential Evaluations),推理的成本相当高。为了使DM在有限的计算资源上进行训练而不影响其质量以及灵活性,Stable Diffusion将DM应用于强大的预训练自动编码器(Pre-trained Autoencoders)。

在这样的前提下训练扩散模型,使其有可能在降低复杂性和保留数据细节之间达到一个最佳平衡点,显著提高视觉真实程度。在模型结构中引入交叉注意力层(cross attention layer),使扩散模型成为一个强大而灵活的生成器,实现基于卷积的高分辨率图像生成。

03 Midjourney及其是如何工作的

Midjourney也是一款由人工智能驱动的工具,其能够根据用户的提示生成图像。MidJourney善于适应实际的艺术风格,创造出用户想要的任何效果组合的图像。它擅长环境效果,特别是幻想和科幻场景,看起来就像游戏的艺术效果。

夜晚的云端城堡,电影般的画面 - 图片由Midjourney生成

Midjourney也是一个人工智能图像生成工具,它通过输入文本和参数,并使用在大量图像数据上训练出的机器学习(ML)算法来生成独一无二的图像。

Midjourney目前只能通过其官方Discord上的Discord机器人使用。用户使用“/imagine”命令生成图像,并像其他AI图像生成工具一样输入命令提示。然后机器人会返回一张图片。

04. DALL·E 2, Stable Diffusion 和 Midjourney之间的比较

DALL-E 2使用数以百万计的图片数据进行训练,其输出结果更加成熟,非常适合企业使用。当有两个以上的人物出现时,DALL-E 2产生的图像要比Midjourney或Stable Diffusion好得多。

而Midjourney则是一个以其艺术风格闻名的工具。Midjourney使用其Discord机器人来发送以及接收对AI服务器的请求,几乎所有的事情都发生在Discord上。由此产生的图像很少看起来像照片,它似乎更像一幅画。

Stable Diffusion 是一个开源的模型,人人都可以使用。它对当代艺术图像有比较好的理解,可以产生充满细节的艺术作品。然而它需要对复杂的prompt进行解释。Stable Diffusion比较适合生成复杂的、有创意的插图。但在创作一般的图像时就显得存在些许不足。

下面的prompt有助于了解每种模型的相似性和差异。

END

点点『在看』,科普火爆的文生图工具背后的技。

参考资料

发布于 2022-12-05 09:23・IP 属地北京

### 如何在 Discord 上使用 Stable Diffusion 及其相关社区 #### 使用 Stable Diffusion 的 Discord 社区 Reddit Discord 是两个主要的在线社交平台,在这些平台上存在许多关于 Stable Diffusion 的活跃社群。特别是 r/StableDiffusion 子版块以及专门设立的 Discord 服务器,成为爱好者们交流技巧、展示创作成果并解决遇到的技术难题的地方[^1]。 #### 利用 Discord 进行媒体生成服务 通过加入特定的 Discord 频道或者安装定制化的机器人程序,用户可以方便地调用基于 Stable Diffusion 技术的服务来创建图像或视频内容。例如,Stable Artisan 就是在 Discord 中提供此类功能的应用之一;它依赖于 Stability AI 开发的一系列先进模型来进行艺术作品的自动化生产过程[^2]。 #### 安装配置稳定扩散 Discord Bot 对于希望更深入参与到这一领域中的个人来说,还可以考虑部署自己的 `stable-diffusion-discord-bot` 实例。这个开源项目允许任何人根据官方文档指导完成设置,并能够响应群聊内的指令以触发图片绘制任务。具体操作指南可以在项目的 GitCode 页面找到更多信息[^3]。 ```bash # 克隆仓库到本地环境 git clone https://gitcode.com/gh_mirrors/st/stable-diffusion-discord-bot.git cd stable-diffusion-discord-bot/ pip install -r requirements.txt python main.py ``` #### 掌握核心技术理论基础 为了更好地理解应用这项技术,建议先熟悉一下有关算法背后的原理及其运作机制的相关资料。这不仅有助于提高实际使用的效率,也能让用户更加清楚自己所创造出来的视觉效果是如何形成的[^4]。 #### 借助开源特性发挥无限可能 得益于完全开放源码的优势,相较于其他同类产品如 DALL·E 或者 MidjourneyStable Diffusion 展现出更为广阔的发展前景发展速度。随着越来越多第三方工具服务的支持接入,再加上庞大的开发者群体共同努力下不断涌现的新颖创意技术革新,使得该软件能够在多种不同类型的图形设计方面取得优异成绩[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值