python实践项目 航空公司客户价值分析

本文介绍了一种基于K-Means算法的航空客户价值分析方法,通过改进RFM模型提出LRFMC模型,对航空公司的客户数据进行聚类分析,识别不同价值的客户群体。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

信息时代的来临使得企业营销焦点从产品转向了客户,客户关系管理(Customer relationship management ,CRM)成为企业的核心问题。客户关系管理的关键问题是客户分群。通过客户分群,区分无价值客户和高价值客户。企业针对不同价值的客户定制优化的个性化服务方案,采取不同营销策略,将有限营销资源集中于高价值客户,实现企业例利润最大化目标。准确的客户分群结果是企业优化营销资源分配的重要依据,客户分群越来越成为客户关系管理中亟待解决的关键问题之一。下面将使用航空公司客户数据,结合RFM模型,采用K-Means聚类算法,对客户进行分群,比较不同类别客户的客户价值,从而指定相应的营销策略。

学习目标

(1) 熟悉航空客户价值分析的步骤和流程
(2) 了解RFM模型的基本原理
(3) 掌握K-Means 算法的基本原理与使用方法.
(4) 比较不同类别客户的客户价值,制定相应的营销策略+

1.了解航空公司现状与客户价值分析

任务描述与分析

任务描述

面对激烈的市场竞争,各个航空公司都推出了更多的优惠来吸引客户。国内某航空公司面临着常旅客流失,竞争力下降和资源未充分利用等经营危机。通过建立合理的客户价值评估模型,对客户进行分群,分析及比较不同客户群的客户价值,并制定相应的营销策略,对不同的客户群提供个性化服务。

任务分析
(1)了解航空公司现状
(2)认识客户价值分析
(3) 熟悉航空公司客户价值分析的步骤与流程

1.1 了解航空公司现状

行业内竞争
民航的竞争除了三大航空公司之间的竞争之外,还将加入新崛起的各类小型航空公司、民营航空公司,甚至国外航空巨头。航空产品生产过剩,产品同质化特征愈加明显,于是航空公司从价格、服务间的竞争逐渐转向对客户的竞争。
在这里插入图片描述行业外竞争
随着高铁、动车等铁路运输的兴建,航空公司受到巨大冲击。
在这里插入图片描述

1.1.1航空公司数据特征说明

目前航空公司已积累了大量的会员档案信息和其乘坐航班记录。
以2014-03-31为结束时间,选取宽度为两年的时间段作为分析观测窗口,抽取观测窗口内有乘机记录的所有客户的详细数据形成历史数据,44个特征,总共62988条记录。数据特征及其说明如右表所示。

在这里插入图片描述
在这里插入图片描述

项目目标

结合目前航空公司的数据情况,可以实现以下目标。

借助航空公司客户数据,对客户进行分类。
对不同的客户类别进行特征分析,比较不同类别客户的客户价值。
对不同价值的客户类别提供个性化服务,制定相应的营销策略。

1.2了解客户价值分析

客户营销战略倡导者Jay & Adam Curry从国外数百家公司进行了客户营销实施的经验中提炼了如下经验。

(1)公司收入的80%来自顶端的20%的客户。
(2)20%的客户其利润率100%。
(3)90%以上的收入来自现有客户。
(4)大部分的营销预算经常被用在非现有客户上。
(5)5%至30%的客户在客户金字塔中具有升级潜力。
(6)客户金字塔中客户升级2%,意味着销售收入增加10%,利润增加50%。
这些经验也许并不完全准确,但是它揭示了新时代客户分化的趋势,也说明了对客户价值分析的迫切性和必要性。

1.3 熟悉航空客户价值分析的步骤与流程

航空客户价值分析项目的总体流程如图7-1所示.主要包括以下4个步骤
(1)抽取航空公司2012年4月1日至2014年3月31日的数据
(2)对抽取的数据进行数据清洗,特征构建和标准化等操作
(3)基于RFM模型,使用K-means算法进行客户分群
(4)针对模型结果得到不同价值的客户,采用不同的营销手段,提供定制化的服务
在这里插入图片描述

2.预处理航空客户数据

任务描述与分析

任务描述
航空公司客户原始数据存在少量的缺失值和异常值,需要清洗后才能用于分析。同时由于原始数据的特征过多,不便直接用于客户价值分析,因此需要对特征进行刷选,挑选出衡量客户价值的关键特征

任务分析
(1)处理数据缺失值与异常值
(2)结合RFM模型刷选特征
(3)标准化刷选后的数据

2.1处理数据缺失值与异常值

通过对数据观察发现原始数据中存在票价为空值,票价最小值为0,折扣率最小值为0,总飞行公里数大于0的记录。票价为空值的数据可能是客户不存在乘机记录造成。
处理方法:丢弃票价为空的记录。
其他的数据可能是客户乘坐0折机票或者积分兑换造成。由于原始数据量大,这类数据所占比例较小,对于问题影响不大,因此对其进行丢弃处理。
处理方法:保留票价非0,或者平均折扣率不为0且总飞行公里数大于0的记录。

2.2构建航空客户价值分析关键特征

1. RFM模型介绍
本项目的目标是客户价值分析,即通过航空公司客户数据识别不同价值的客户,识别客户价值应用最广泛的模型是RFM模型。
R(Recency)指的是最近一次消费时间与截止时间的间隔。通常情况下,最近一次消费时间与截止时间的间隔越短,对即时提供的商品或是服务也最有可能感兴趣。
F(Frequency)指顾客在某段时间内所消费的次数。可以说消费频率越高的顾客,也是满意度越高的顾客,其忠诚度也就越高,顾客价值也就越大。
M(Monetary)指顾客在某段时间内所消费的金额。消费金额越大的顾客,他们的消费能力自然也就越大,这就是所谓“20%的顾客贡献了80%的销售额”的二八法则。

2. RFM模型结果解读
RFM模型包括三个特征,使用三维坐标系进行展示,如图所示。X轴表示Recency,Y轴表示Frequency,Z轴表示Monetary,每个轴一般会分成5级表示程度,1为最小,5为最大。
在这里插入图片描述
3. 传统RFM模型在航空行业的缺陷

在RFM模型中,消费金额表示在一段时间内,客户购买该企业产品金额的总和,由于航空票价受到运输距离,舱位等级等多种因素影响,同样消费金额的不同旅客对航空公司的价值是不同的,因此这个特征并不适合用于航空公司的客户价值分析。
在这里插入图片描述
4. 航空客户价值分析的LRFMC模型

本项目选择客户在一定时间内累积的飞行里程M和客户在一定时间内乘坐舱位所对应的折扣系数的平均值C两个特征代替消费金额。此外,航空公司会员入会时间的长短在一定程度上能够影响客户价值,所以在模型中增加客户关系长度L,作为区分客户的另一特征。
本项目将客户关系长度L,消费时间间隔R,消费频率F,飞行里程M和折扣系数的平均值C作为航空公司识别客户价值的关键特征(如表 3 2所示),记为LRFMC模型。
在这里插入图片描述

2.3 标准化LRFMC五个特征

完成五个特征的构建以后,对每个特征数据分布情况进行分析,其数据的取值范围如表所示。从表中数据可以发现,五个特征的取值范围数据差异较大,为了消除数量级数据带来的影响,需要对数据做标准化处理。

在这里插入图片描述
L、R、F、M和C五个特征的数据示例,上图为原始数据,下图为标准差标准化处理后的数据

在这里插入图片描述
在这里插入图片描述

2.4任务实现

import numpy as np
import pandas as pd
air_data = pd.read_csv("./air_data.csv",encoding = "gb18030")
print('原始数据的形状为:',air_data.shape)

在这里插入图片描述

# 丢失的数据的数目及其丢失的比率
total = air_data.isnull().sum().sort_values(ascending=False)
percent = (air_data.isnull().sum()/air_data.count()).sort_values(ascending=False)
missing_data = pd.concat([total,percent]
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据闲逛人

谢谢大嘎喔~ 开心就好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值