抽样分布()

什么是统计量?

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是来自总体 X X X的一个样本, g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn) X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn的函数,若 g g g中不含未知参数,则称 g ( X 1 , X 2 , ⋯   , X n ) g(X_1,X_2,\cdots,X_n) g(X1,X2,,Xn)是一个统计量

常见统计量

统计量定义R代码总体数字特征定义
样本均值 X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i X=n1i=1nXi m e a n ( x , t r i m , n a . r m = F A L S E ) mean(x,trim,na.rm=FALSE) mean(x,trim,na.rm=FALSE)总体期望 x ‾ = 1 n ∑ i = 1 n x i \overline{x}=\frac{1}{n}\sum_{i=1}^{n}x_i x=n1i=1nxi
样本方差 S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2 S2=n11i=1n(XiX)2 v a r ( x , y = N U L L , n a . r m = F A L S E , u s e ) var(x,y=NULL,na.rm=FALSE,use) var(x,y=NULL,na.rm=FALSE,use)总体方差 s 2 = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 s^2=\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2 s2=n11i=1n(xix)2
样本标准差 S = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S=\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2} S=n11i=1n(XiX)2 s d ( x , n a . r m = F A L S E ) sd(x,na.rm=FALSE) sd(x,na.rm=FALSE)标准差 s = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) 2 s=\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\overline{x})^2} s=n11i=1n(xix)2
样本 k k k阶矩 A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , ⋯ A_k=\frac{1}{n}\sum_{i=1}^{n}X_i^k,k=1,2,\cdots Ak=n1i=1nXik,k=1,2, A K < − s u m ( X AK<-sum(X AK<sum(X^ k ) / l e n g t h ( x ) k)/length(x) k)/length(x)总体 k k k阶矩 a k = 1 n ∑ i = 1 n x i k , k = 1 , 2 , ⋯ a_k=\frac{1}{n}\sum_{i=1}^{n}x_i^k,k=1,2,\cdots ak=n1i=1nxik,k=1,2,
样本 k k k阶中心矩 B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 2 , 3 , ⋯ B_k=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^k,k=2,3,\cdots Bk=n1i=1n(XiX)k,k=2,3, m < − m e a n ( x ) B K < − s u m ( ( x − m ) k / ( l e n g t h ( x ) m<-mean(x)\\BK<-sum((x-m)^k/(length(x) m<mean(x)BK<sum((xm)k/(length(x)总体 k k k阶中心矩 b k = 1 n ∑ i = 1 n ( x i − x ‾ ) k , k = 2 , 3 , ⋯ b_k=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^k,k=2,3,\cdots bk=n1i=1n(xix)k,k=2,3,
样本偏度 g = m 3 / m 2 ( 3 / 2 ) g = m_3/m_2^{(3/2)} g=m3/m2(3/2)
m 2 = 1 n ∑ i ( x i − μ ) 2 m_2 = \frac{1}{n}\sum_i(x_i-\mu)^2 m2=n1i(xiμ)2
m 3 = 1 n ∑ i ( x i − μ ) 3 m_3=\frac{1}{n}\sum_i(x_i-\mu)^3 m3=n1i(xiμ)3
s k e w n e s s ( x ) # skewness(x) \# skewness(x)# 偏度系数
a g o s t i n o . t e s t ( x ) # agostino.test(x) \# agostino.test(x)# 偏度的检验
总体偏度在这里插入图片描述
样本峰度在这里插入图片描述 k u r t o s i s ( x ) # kurtosis(x) \# kurtosis(x)# 计算峰度
a n s c o m b e . t e s t ( x ) # anscombe.test(x) \# anscombe.test(x)# 峰度检验
总体峰度在这里插入图片描述

样本矩与总体矩的关系:若总体 X X X k k k阶矩 E ( X k ) E(X^k) E(Xk)记成 μ k \mu_k μk存在,当 n → ∞ n \rightarrow \infty n时, A k → p μ k A_k \stackrel{\mathrm{p}}{\rightarrow}{\mu_k} Akpμk

经验分布函数,格里汶科定理及定理含义

总体分布函数 F ( x ) F(x) F(x)相应的统计量称为经验分布函数

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是总体 F F F的一个样本,用 S ( x ) ( − ∞ < x < + ∞ ) S(x)(-\infty < x < +\infty) S(x)(<x<+)表示 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn中不大于 x x x的随机变量的个数,定义经验分布函数 F n ( x ) 为 F_n(x)为 Fn(x)
F n ( x ) = 1 n S ( x ) , − ∞ < x < + ∞ F_n(x)=\frac{1}{n}S(x), -\infty < x < +\infty Fn(x)=n1S(x)<x<+
格里汶科定理

对于任一实数 x x x,当 n → ∞ n \rightarrow \infty n时, F n ( x ) F_n(x) Fn(x)以概率为 1 1 1一致收敛于分布函数 F ( x ) F(x) F(x),即​
p { lim ⁡ n → ∞ sup ⁡ − ∞ < x < + ∞ ∣ F n ( x ) − F ( x ) ∣ = 0 } = 1 a l h p a p\{\lim_{n \rightarrow \infty} \sup_{-\infty < x < +\infty} |F_n(x)-F(x)|=0\}=1alhpa p{nlim<x<+supFn(x)F(x)=0}=1alhpa

三种常见抽样分布

分布构成方式性质概率密度函数
卡方分布 χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 \chi^2 = X_1^2+X_2^2+\cdots+X_n^2 χ2=X12+X22++Xn2 χ 1 2 + χ 2 2 \chi_1^2+\chi_2^2 χ12+χ22~ χ 2 ( n 1 + n 2 ) \chi^2(n_1+n_2) χ2(n1+n2)
χ 2 \chi^2 χ2~ χ 2 ( n ) \chi^2(n) χ2(n) E ( χ 2 ) = n , D ( χ 2 ) = 2 n E(\chi^2)=n,D(\chi^2)=2n E(χ2)=n,D(χ2)=2n
P { χ 2 > χ α 2 ( n ) } = ∫ χ α 2 ( n ) ∞ f ( y ) d y = α P\{\chi^2>\chi^2_{\alpha}(n)\}=\int^{\infty}_{\chi_{\alpha}^{2}(n)}f(y)dy=\alpha P{χ2>χα2(n)}=χα2(n)f(y)dy=α
t t t分布 t = X Y / n t=\frac{X}{\sqrt{Y/n}} t=Y/n X lim ⁡ n → ∞ h ( t ) = 1 2 π e − t 2 2 \lim_{n \rightarrow \infty}h(t)=\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}} limnh(t)=2π 1e2t2 h ( t ) = Γ ( n + 1 2 ) π n Γ ( n 2 ) ( 1 + t 2 n ) − n + 1 2 , − ∞ < t < + ∞ h(t)=\frac{\Gamma(\frac{n+1}{2})}{\sqrt{\pi n} \Gamma(\frac{n}{2})}(1+\frac{t^2}{n})^{-\frac{n+1}{2}},-\infty < t < +\infty h(t)=πn Γ(2n)Γ(2n+1)(1+nt2)2n+1,<t<+
F F F分布 U U U~ χ 2 ( n 1 ) \chi^2(n_1) χ2(n1)
V V V~ χ 2 ( n 2 ) \chi^2(n_2) χ2(n2) U , V U,V U,V独立
F = U / n 1 V / n 2 F=\frac{U/n_1}{V/n_2} F=V/n2U/n1
F F F~ F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2)
1 F \frac{1}{F} F1~ F ( n 2 , n 1 ) F(n_2,n_1) F(n2,n1)
在这里插入图片描述

正态总体的样本均值和样本方差的分布

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ , S 2 \overline{X},S^2 XS2是样本均值和样本方差,则有

​ 1、 ( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)

​ 2、 X ‾ \overline{X} X S 2 S^2 S2独立

​ 3、 X ‾ − μ S / n \frac{\overline{X}-\mu}{S/\sqrt{n}} S/n Xμ~ t ( n − 1 ) t(n-1) t(n1)

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值