要想搞懂AI产品的开发流程,看这篇就够了

一、首先了解何为AI?

AI(Artificial Intelligence 人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。

当年的图灵实验就是要区分到底是人还是机器回答,图灵实验如今已经无法区分到底是人还是AI回答,AI已具有了人类的认知能力。人工智能(AI)的核心是根据给定的输入信息来做出决策、判断或预测。这种能力是通过机器学习算法、深度学习网络和其他相关技术实现的。

AI系统能够处理和分析大量数据,从中学习模式和规律,然后根据这些学习到的知识来做出响应。

AI的模拟人类认识能力表现在多个方面:

感知能力: 通过图像识别、语音识别和自然语言处理等技术,AI可以模拟人类的视觉、听觉等感知能力,理解和解析环境中的信息。

学习能力: AI系统能够从数据中学习,不断改进和优化其性能。这种学习能力使得AI能够适应新情况并解决未见过的问题。

推理能力: 基于已有的知识和逻辑规则,AI可以进行推理,推导出新的结论或预测未来的情况。

决策能力: 在给定的情况下,AI可以评估不同的行动方案,并选择最优的决策。这种能力在自动驾驶、医疗诊断和金融投资等领域尤为重要。

创造力: 虽然目前AI的创造力还远远不能与人类相媲美,但在某些领域,如艺术、音乐和写作中,AI已经能够生成新颖的作品。

情感理解: 情感AI是一个新兴领域,旨在让机器能够理解、模拟和回应人类的情感。虽然这仍然是一个挑战,但AI已经在情感分析和回应方面取得了一些进展。

为了利用AI的这些能力,需要构建相应的算法和模型,并使用大量数据进行训练。随着技术的不断发展,AI将在更多领域发挥重要作用,提高生产效率,改善生活质量,并推动科学研究的进步。

二、为何开发AI应用?

作为一名开发人员,无需从零开始进行开发,仅需要使用现成的模型就可完成AI应用的开发,使用开源和开放的接口,让更多AI应用如雨后春笋般地不断冒出。

第一步需要确定AI应用的目的,开发AI的目的就是将替代我们人类完成工作,AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。

何为数据? 万物皆为数据,数字化进程不断演进的当下,语音是数据、图形是数据、空间位置是数据、你的生活习惯是数据,你的生命特征也是数据,亚洲技术前期文章《阿尔法狗已让我们震惊,这FOLD让我们意识到人类已被超越》中介绍了人工智能在围棋技能方面超越人类,医学领域AI 的数据分析的强悍能力人类更是无法企及,这是都是数据分析和推理能力方面AI超越人类。其实我们很多的实验都是为了得到数据,数据背后有巨大的价值。

看透人工智能(AI)的最核心的内容就是:根据给定的输入信息来做出决策、判断或预测。这种能力是通过机器学习算法、深度学习网络和其他相关技术实现的。AI系统能够处理和分析大量数据,从中学习模式和规律,然后根据这些学习到的知识来做出响应。

对AI开发的目的就是要完成数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。

三、AI开发的基本流程

AI开发其实就是教会机器如何按照人的思维去工作的过程,和人类学习差不多,都是先模仿,后自行决策的过程,如同我们小时候学习的技能,例如教小孩子走路:抱托站立、辅佐训练、指导纠正、放手行进的过程,而AI开发的基本流程可归纳为:确定目的、准备数据、训练模型、评估模型、部署模型。

图片

1、确定目的

在开始AI开发之前,必须明确要分析什么?要解决什么问题?商业目的是什么?基于商业的理解,整理AI开发框架和思路。例如,图像分类、物体检测、智能决策、甚至是机器人控制等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。

2、准备数据及数据清洗

数据准备主要是指收集和预处理数据的过程。这犹如训练小孩子的发音一样,按照明确的目的进行训练的前提,预处理就是判断何为正确、何为错误、如何下一步等等

按照你想实现的目标,和目标所需的参数进行有目的性地收集、整合相关数据,预处理数据,确保准备的数据真实可靠,这是AI开发的一个基础。数据清洗过程就是将数据中错误和异常数据进行修正,确保数据可靠。后期训练中可能还要不断提供数据,在数据标注阶段可能会反复调整优化,增加相关数据。

数据准备:这是建模的第一步,涉及收集、清洗、整合和格式化数据,以确保数据质量并使其适合于后续的分析。

探索性数据分析(EDA):在这一阶段,数据科学家会利用各种统计工具和可视化技术来初步了解数据的分布、异常值、相关性等特征。

特征工程:这是从原始数据中提取或创建新特征的过程,这些特征能够更有效地被机器学习模型利用。

3、训练模型

俗称“建模”,指通过分析手段、方法和技巧对准备好的数据进行探索分析,从中发现因果关系、内部联系和业务规律,为商业目的提供决策参考。数据科学、机器学习和人工智能领域中常见的“建模”流程。建模不仅涉及数据的探索和分析,还包括使用统计方法、机器学习算法和深度学习技术来识别数据中的模式、趋势和关联,进而构建能够做出预测或决策的模型。

模型选择:根据业务需求和数据特性,选择合适的机器学习或深度学习算法。

训练模型:使用准备好的数据集训练选定的模型,通过优化算法调整模型参数,以最小化预测误差。

业界主流的AI引擎如TensorFlow、PyTorch和MindSpore为开发者提供了构建和训练模型的强大工具。这些框架不仅支持广泛的算法和模型架构,还提供了高效的计算能力和易于使用的API,使得开发者能够更快速地迭代和优化模型。

TensorFlow最初由Google开发,是目前应用最广泛的深度学习框架之一。它支持分布式训练,能够在不同硬件上高效运行,并且有一个庞大的社区和丰富的生态系统,提供了许多预训练的模型和工具。

PyTorch是Facebook推出的深度学习框架,以其动态计算图和高效的GPU加速功能而受到欢迎。它支持快速原型设计和实验,并且具有高效的内存管理能力。

MindSpore是华为推出的全场景深度学习框架,旨在提供易开发、高效执行、全场景覆盖的能力。它支持端、边、云独立的和协同的统一训练和推理,并且具有自适应的分布式能力。

开发者可以根据自己的需求和偏好选择合适的AI引擎来构建和训练模型。

4、评估模型

训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。

模型评估:使用验证集或测试集评估模型的性能,通常包括准确率、召回率、F1 分数、AUC-ROC 等指标。

往往不能一次性获得一个满意的模型,需要反复调整算法参数、数据,不断评估训练生成的模型,最终获得一个满意的模型。

5、部署模型

基于已有数据进行模型训练得到一个满意的模型之后,将训练好的模型部署到生产环境中,以便对新数据进行预测或分类,并为业务决策提供支持。需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视化和报表的形式把数据中的高价值信息以精辟易懂的形式提供给决策人员,帮助其制定更加正确的商业策略。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值