基于AI投资策略的量化投资研究:BigQuant与StockRanker的应用【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)基于BigQuant平台的AI量化投资策略构建

随着居民财富的快速增长,如何实现资产的保值增值成为每个家庭和个人面临的重大挑战。与此同时,金融机构如银行、证券公司、基金公司和信托公司等也在寻求如何为客户提供高质量、高效率的财富管理服务。在这个过程中,多样化的金融与投资风险成为了不可忽视的问题。随着信息科技和数字经济的发展,数理学、金融学和投资学等理论的交互融合,以及金融衍生品的不断多样化,AI技术在量化投资领域的应用逐渐引起了国内外金融界和学术界的广泛关注。

本文结合人工智能技术,基于BigQuant AI量化平台,构建了一套高效的开发环境,利用平台独具特色的BigStudio可视化策略生成器和代码策略生成器,实现简易、快速的试验迭代,交互开发科学有效的AI投资策略。BigQuant平台封装了众多的机器学习算法,解决了当前量化投资研究中AI算法难以实现的关键问题。通过DataSource调用TB~PB级别的投资大数据并进行深度学习,极大提升了大数据处理速度,提高了AI投资策略的研究效率。

  1. 数据准备与预处理:首先,从BigQuant平台的DataSource中获取中国A股市场的历史交易数据,包括股票价格、成交量、财务指标等多维度数据。数据预处理阶段包括数据清洗、缺失值处理、异常值检测和标准化等步骤,确保数据的质量和一致性。

  2. 模型训练与预测:本文采用StockRanker模型对样本数据进行训练。StockRanker模型是一种基于深度学习的股票排名模型,能够对股票进行综合评分和排序。通过训练模型,对样本股票进行预测排序,根据预测结果构建交易逻辑。具体来说,模型会根据股票的历史表现、财务指标和技术指标等多个维度,对股票进行综合评分,评分高的股票被认为是优质投资标的。

  3. 交易逻辑与回测ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值