Diffusion Model综述

文章目录

Diffusion Model、LDM 、DiT 的关系

Diffusion Model(扩散模型)、Latent Diffusion Model(LDM)和Diffusion Transformer(DiT)是生成式AI中紧密关联的三类模型,其关系可总结为以下技术演进路径:

1. 演进关系

Diffusion Model(基础扩散模型)
  ↓
LDM(Latent Diffusion Model,潜在扩散模型)
  ↓
DiT(Diffusion Transformer,扩散Transformer)

  • Diffusion Model 是基础理论框架(如DDPM)。
  • LDM 是 Diffusion Model 的高效改进版,引入 潜在空间(Latent Space) 降低计算成本。
  • DiT 是新一代架构,用 Transformer 替代 UNet,代表扩散模型的未来方向(如SD3、Sora)。

2. 核心概念对比

(1) Diffusion Model(基础扩散模型)
  • 代表方法:DDPM、DDIM
  • 核心思想
    • 正向过程:逐步加噪,直到数据变成纯噪声。
    • 反向过程:训练模型(如UNet)逐步去噪,恢复数据。
  • 缺点
    • 直接在 像素空间 计算,成本极高(如生成512x512图像需数百次迭代)。
(2) LDM(Latent Diffusion Model)
  • 提出者:Rombach et al. (2022)
  • 核心改进
    1. 潜在空间扩散
      • VAE 将图像压缩到低维空间(如64x64x4),大幅减少计算量。
    2. 条件控制
      • 支持文本、语义图等条件输入,通过 交叉注意力(Cross-Attention) 注入UNet。
  • 优势
    • 比传统Diffusion Model 快5-10倍,成为Stable Diffusion的基础。
(3) DiT(Diffusion Transformer)
  • 提出者:Peebles et al. (2023)
  • 核心思想
    • 纯Transformer架构 替代传统UNet,实现更高效的全局建模。
    • 代表模型:
      • Stable Diffusion 3(SD3):结合DiT与UNet的混合架构。
      • Sora(OpenAI):基于DiT的视频生成模型。
  • 优势
    • 更强的 长程依赖建模能力,适合高分辨率、多模态生成。
(4) Stable Diffusion
  • 本质:LDM 的 优化工业版,由Stability AI开源。
  • 核心特点
    1. 文本到图像专用
      • 使用 CLIP文本编码器(SD1用CLIP ViT-L,SD2用OpenCLIP ViT-H)。
    2. 计算优化
      • 适配消费级GPU(如8GB显存可运行)。
    3. 生态扩展
      • 支持插件(ControlNet)、微调(LoRA)等。

3. 架构对比

模型Diffusion ModelLDMStable DiffusionDiT
操作空间像素空间潜在空间(VAE压缩)潜在空间(优化VAE)潜在空间(可选项)
主干网络UNetUNetUNet + CLIPTransformer
条件控制可选(如分类器引导)文本/图像/布局文本为主多模态(文本/视频)
计算效率高(消费级GPU友好)极高(需大算力)
代表应用学术研究通用图像生成文生图(AIGC)SD3、Sora等下一代模型

4. 协同关系

  • LDM为DiT奠定框架:DiT保留LDM的VAE编码/解码结构,仅替换U-Net为Transformer。
  • 条件机制通用性:三者均支持通过交叉注意力注入文本/图像条件(如CLIP嵌入)。
  • 应用扩展
    • SD3:基于DiT架构(MMDiT),结合Rectified Flow优化采样。
    • Sora:视频生成模型,融合DiT与LDM技术。

5. 总结

Diffusion Model (像素空间)
    ↓ 效率优化
Latent Diffusion Model (潜在空间 + U-Net)
    ↓ 架构革新
Diffusion Transformer (潜在空间 + Transformer)
关键改进点:
  1. Diffusion Model → LDM:
    • 从 像素空间 → 潜在空间,计算量大幅降低。
    • 引入 条件控制机制(如文本引导生成)。
  2. LDM → Stable Diffusion:
    • 优化 VAE和UNet架构,提升生成质量。
    • 集成 CLIP文本编码器,成为文生图标杆。
    • 开源生态,推动AIGC普及。
      LDM解决了DM的计算效率问题,DiT进一步通过Transformer提升了生成质量和扩展性。

5. Stable Diffusion主要版本对比

版本理论架构关键创新文本编码器条件注入方式VAE压缩比参数量
SD 1.x系列LDM + U-Net + CLIP首次在潜在空间(64×64)进行扩散,计算效率提升48倍;支持文本/图像生成。CLIP ViT-L/14(768维)交叉注意力(U-Net中注入文本嵌入)512×512→64×64(48倍)860M(U-Net)
SD 2.x系列升级版LDM + OpenCLIP分辨率提升至768×768;引入深度引导(Depth2img);改进训练数据(LAION-5B)。OpenCLIP ViT-H(1024维)多模态条件(文本+深度图)融合768×768→96×96(64倍)865M(U-Net)
SD 3.x系列DiT(MMDiT架构) + Rectified Flow替换U-Net为Transformer;支持动态分辨率(最高2048×2048);多模态输入(文本+图像+音频)。双CLIP + T5(多模态融合)独立权重处理(文本/图像模态分离)自适应压缩比800M-8B(可扩展)

Diffusion Model

Diffusion Model 是一种 生成模型的理论框架,其核心思想是通过逐步添加噪声(正向过程)和逐步去噪(反向过程)来学习数据分布。
通过逐步去噪(逆向过程)从噪声中生成数据。其核心组件包括:

  • 前向过程:逐步向数据添加噪声。
  • 逆向过程:通过去噪网络(如 U-Net)逐步恢复数据。
  • 噪声预测目标:训练网络预测每一步的噪声。

关键点:Diffusion Model 仅定义了生成范式,不限定具体网络架构。

扩散模型(Diffusion Model) 通过逐步“去噪”来生成图像,其过程可以分为两个阶段:

1. 前向扩散(Forward Diffusion)—— 加噪

  • 给定一张真实图像 x 0 x_0 x0,模型会逐步添加高斯噪声(Gaussian Noise),经过 T T T 步后,图像逐渐变成纯噪声噪声 x T x_T xT(类似于一张完全随机的图片)。
  • 这个过程可以看作是一个马尔可夫链(Markov Chain),每一步的噪声强度由调度器(Scheduler)控制(如 DDPM、DDIM 等)。
  • 数学上,前向扩散可以表示为:
    q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t} x_{t-1}, \beta_t \mathbf{I}) q(xtxt1)=N(xt;1βt xt1,βtI)
    其中 β t \beta_t βt 是噪声调度参数,控制每一步的噪声强度。
  • 前向扩散不需要 U-Net​
    • 前向扩散是一个 ​固定的、预定义的加噪过程,它只是按照预设的噪声调度(如线性、余弦等)逐步向图像添加高斯噪声。加噪过程完全由噪声调度(如 beta_talpha_t)定义,无需学习。
    • 这是一个纯数学操作,​不涉及任何神经网络​(包括 U-Net)。
    • 公式表示:
      x t = α t ⋅ x t − 1 + 1 − α t ⋅ ϵ , ϵ ∼ N ( 0 , I ) x_t = \sqrt{\alpha_t} \cdot x_{t-1} + \sqrt{1 - \alpha_t} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) xt=αt xt1+1αt ϵ,ϵN(0,I)
      其中 α t \alpha_t αt 是噪声调度参数, ϵ \epsilon ϵ 是随机噪声。

2. 反向扩散(Reverse Diffusion)—— 去噪

  • 模型的任务是学习如何从噪声 x T x_T xT 逐步“去噪”,最终恢复出清晰的图像 x 0 x_0 x0

  • 在训练阶段,模型(通常是 U-Net)会学习预测当前步的噪声 ϵ \epsilon ϵ,然后根据预测的噪声计算下一步的 x t − 1 x_{t-1} xt1 。去噪过程必须建模复杂的数据分布,因此需要 U-Net 这样的强大网络来预测噪声。

  • 数学上,反向扩散可以表示为:
    p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , Σ θ ( x t , t ) ) p_\theta(x_{t-1} | x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \Sigma_\theta(x_t, t)) pθ(xt1xt)=N(xt1;μθ(xt,t),Σθ(xt,t))

    其中 μ θ \mu_\theta μθ Σ θ \Sigma_\theta Σθ 是模型预测的均值和方差。

3. 在 Stable Diffusion 中的特殊设计

  • Latent Diffusion(潜在扩散):SD 并不直接在像素空间(如 512x512 图像)上做扩散,而是先通过 VAE(变分自编码器)将图像压缩到 潜在空间(Latent Space)(如 64x64),然后在低维空间进行扩散,大幅降低计算量。
  • 条件扩散(Conditional Diffusion):SD 的扩散过程受 文本提示(Prompt) 控制,通过 CLIP 文本编码器(如 OpenAI 的 CLIP 或 SD3 的 T5)将文本转换为嵌入向量,引导 U-Net 在去噪时生成符合描述的图像。

4. Diffusion 在生成图像时的作用

  • 在推理(生成图像)时,SD 从一个随机噪声 x T x_T xT 开始,通过 U-Net 逐步去噪,每一步都根据文本提示调整去噪方向,最终得到清晰的图像。
  • 由于扩散是逐步进行的,模型可以生成细节丰富、符合语义的高质量图像。

5. 关键技术对比

Diffusion Model(理论框架)
├── U-Net(CNN 实现) # 如 Stable Diffusion 1.5, DDPM
└── DiT(Transformer 实现) # 如 Stable Diffusion 3, Sora

特性U-Net(传统扩散)DiT
网络架构CNN + 下采样-上采样Transformer + Patchify
感受野局部(受卷积核限制)全局(自注意力覆盖所有 Patch)
条件注入交叉注意力(计算成本高)adaLN 或 In-context(高效)
扩展性有限(CNN 难以放大)强(符合 Scaling Law)
典型应用DDPM, Stable Diffusion 1.5Sora, Stable Diffusion 3

总结

  • Diffusion(扩散) 在 Stable Diffusion 中指的是 “加噪-去噪” 的生成过程,核心思想是通过学习如何逆转噪声的扩散过程来生成数据。
  • Latent Diffusion 使其高效,条件扩散 使其可控,从而能够根据文本生成高质量的图像。

LDM(Latent Diffusion Model)详解

LDM是 Diffusion Model的一种改进架构,核心思想是通过在低维潜在空间中执行扩散过程,显著提升计算效率和生成质量。
LDM 是 Stable Diffusion 系列的核心框架,通过将扩散过程迁移到低维潜在空间,显著提升了生成效率和质量。以下是其核心思想、架构设计及技术优势的全面解析:


1. 核心思想

LDM 的核心创新是 “在潜在空间中执行扩散”,而非直接在像素空间操作。其动机源于两点:

  1. 计算效率:高分辨率图像(如512×512)直接扩散计算成本极高。
  2. 信息密度:原始像素包含大量冗余信息(如纹理细节),潜在空间能捕捉更本质的特征。

关键公式:
潜在空间扩散的逆向过程:
p θ ( z t − 1 ∣ z t , c ) = N ( z t − 1 ; μ θ ( z t , c , t ) , Σ θ ( z t , c , t ) ) p_\theta(z_{t-1}|z_t, c) = \mathcal{N}(z_{t-1}; \mu_\theta(z_t, c, t), \Sigma_\theta(z_t, c, t)) pθ(zt1zt,c)=N(zt1;μθ(zt,c,t),Σθ(zt,c,t))

其中 ( z ) 是潜在变量,( c ) 是条件(如文本)。

​扩散模型基础​:

  • 扩散模型通过逐步添加噪声破坏数据(前向过程),再学习逆向去噪过程(反向过程)来生成数据。传统扩散模型(如DDPM)直接在像素空间操作,计算开销大。

​潜在空间优化​:

  • LDM利用预训练的自编码器​(如VAE或VQ-VAE)将高维数据(如图像)压缩到低维潜在空间,扩散过程在该空间进行,大幅减少参数量和计算量。

2. 架构设计

LDM 的架构分为三大模块:

(1) VAE(变分自编码器)
  • 作用:
    • 编码器(Encoder):将图像 x x x 压缩为潜在表示 z z z(如64×64×4)。
    • 解码器(Decoder):从为潜在表示 z z z 重建图像 x ^ \hat{x} x^
  • 优势:
    • 降维后计算量减少约16-64倍(对比像素空间512×512×3)。
    • 保留语义信息,过滤高频噪声。
(2) 扩散模型(Diffusion Model)
  • 潜在空间扩散:
    • 在潜在变量 ( z ) 上执行扩散(加噪/去噪)。
    • 使用 U-Net(SD1.5)或 Transformer(SD3)预测噪声。
  • 条件控制:
    • 通过交叉注意力(Cross-Attention)注入文本嵌入(CLIP)。通过文本(CLIP)、类别标签等引导生成
    • 时间步(Timestep)信息通过自适应归一化(AdaIN)注入。
(3) 条件编码器(Conditioning)
  • 文本编码:CLIP 文本模型提取语义特征。
  • 其他条件:支持深度图、分割图等(如ControlNet扩展)。

3. 为何选择潜在空间

维度像素空间扩散潜在空间扩散(LDM)
计算复杂度高(如512²×3=786K维)低(如64²×4=16K维)
生成质量易受高频噪声干扰聚焦语义特征,生成更稳定
扩展性难适配高分辨率轻松支持1024×1024+生成
训练成本需更大显存和算力适合消费级GPU(如8GB显存)

4. 关键技术优势

(1) 两阶段训练
  1. VAE预训练:单独训练编码器/解码器,学习高效潜在表示。
  2. 扩散训练:固定VAE,仅训练扩散模型(U-Net或Transformer)。
(2) 条件机制
  • 交叉注意力:文本Token与图像特征动态交互(SD1.5)。
  • 多条件支持:可同时控制文本、布局、风格等(通过Concat或Attention)。
(3) 隐空间性质
  • 连续性:潜在空间插值生成平滑过渡内容(如人脸渐变)。
  • 解耦性:通过调节 ( z ) 的维度可分离不同属性(如光照、姿态)。

5. 应用场景

领域应用案例
文生图Stable Diffusion 系列、DALL·E 2(隐空间扩散变体)
图像编辑基于潜变量的语义修改(如“微笑→严肃”)
超分辨率从低分辨率潜变量重建高清细节(如LDM+SR3)
科学计算分子结构生成、气候数据建模(潜在空间压缩高维数据)

6. 局限性与改进方向

局限性
  • 信息损失:VAE压缩可能丢失细节(需平衡压缩率与保真度)。
  • 文本对齐:传统LDM依赖交叉注意力,易忽略复杂提示(SD3通过MMDiT改进)。
改进方向
  1. 架构升级:
    • 用Transformer替代U-Net(如SD3的MMDiT)。
    • 引入Rectified Flow优化扩散路径。
  2. 多模态扩展:
    • 支持视频、3D数据的潜在扩散(如Sora的时空Transformer)。

7. 总结

LDM 通过 “潜在空间扩散” 实现了高效、高质量的生成,其核心贡献在于:

  1. 计算效率:降维处理使扩散模型可平民化部署。
  2. 灵活性:兼容多种条件控制(文本、图像、结构)。
  3. 扩展性:为后续技术(如SD3、视频生成)奠定基础。

作为Stable Diffusion的基石,LDM证明了潜在空间在生成式AI中的不可替代性,未来可能进一步与物理引擎、3D建模等技术结合。

  • LDM 是Stable Diffusion的“心脏”,提供高效扩散的理论基础。
  • Stable Diffusion 是LDM的“明星应用”,通过工程优化和开源生态成为AIGC标杆。

二者关系:LDM是框架,SD是产品;理解LDM有助于深入掌握SD的底层原理。

U-Net 的使用


1. 前向扩散(Forward Diffusion)

  • 不需要 U-Net
    前向扩散是一个 固定的、预定义的加噪过程,它只是按照预设的噪声调度(如线性、余弦等)逐步向图像添加高斯噪声。
    • 这是一个纯数学操作,不涉及任何神经网络(包括 U-Net)。
    • 公式表示:
      x t = α t ⋅ x t − 1 + 1 − α t ⋅ ϵ , ϵ ∼ N ( 0 , I ) x_t = \sqrt{\alpha_t} \cdot x_{t-1} + \sqrt{1 - \alpha_t} \cdot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) xt=αt xt1+1αt ϵ,ϵN(0,I)
      其中 α t \alpha_t αt 是噪声调度参数, ϵ \epsilon ϵ 是随机噪声。

2. 反向扩散(Reverse Diffusion)

  • 完整使用 U-Net
    反向扩散是 生成图像的核心过程,由 完整的 U-Net 完成。U-Net 的任务是 预测当前时间步的噪声 ϵ \epsilon ϵ,以便从带噪图像 x t x_t xt 逐步恢复出清晰图像 x 0 x_0 x0
    • 输入:带噪的 latent 特征 x t x_t xt、时间步 t t t、条件(如文本嵌入 text_embeddings)。
    • 输出:预测的噪声 ϵ ^ \hat{\epsilon} ϵ^,用于计算下一步的 x t − 1 x_{t-1} xt1
    • U-Net 结构:
      • 编码器(Downsample):逐步压缩空间维度,提取高层语义特征。
      • 解码器(Upsample):逐步恢复空间细节,结合跳跃连接(Skip Connections)保留局部信息。
      • 时间嵌入(Timestep Embedding):将时间步 t t t 编码为特征,控制去噪过程。
      • 交叉注意力(Cross-Attention):在 U-Net 的中间层引入文本条件(如 "a cat"),确保生成内容与提示对齐。

3. 为什么前向扩散不需要 U-Net?

  • 前向扩散是确定性的:加噪过程完全由噪声调度(如 beta_talpha_t)定义,无需学习。
  • 反向扩散需要学习:去噪过程必须建模复杂的数据分布,因此需要 U-Net 这样的强大网络来预测噪声。

4. 总结

阶段是否使用 U-Net输入输出作用
前向扩散❌ 不需要真实图像 x 0 x_0 x0带噪图像 x T x_T xT破坏数据,生成训练样本
反向扩散✅ 完整 U-Net带噪图像 x t x_t xt、时间步 t t t、文本条件预测噪声 ϵ ^ \hat{\epsilon} ϵ^逐步去噪,生成目标图像

5. 补充说明

  • 训练时:U-Net 的输入是前向扩散生成的带噪图像 x t x_t xt,目标是预测添加的噪声 ϵ \epsilon ϵ
  • 推理时:U-Net 从随机噪声 x T x_T xT 开始,逐步去噪生成图像。
  • U-Net 是唯一可训练部分:扩散模型的其他组件(如 VAE、CLIP 文本编码器)通常是预训练且冻结的。

DiT:扩散模型的神经网络实现


1. DiT 的核心思想

DiT 的目标是 用 Transformer 替代传统扩散模型中的 U-Net,解决两个关键问题:

  • U-Net 的局限性:CNN 架构的归纳偏置(局部性)限制了全局建模能力。
  • Transformer 的优势:更强的全局理解能力(自注意力)和可扩展性(Scaling Law)。

“Diffusion 仅要求其去噪网络是一个输入输出等尺寸的 image-to-image 模型… DiT 使用 Transformer 替换掉 UNet,验证了 Transformer 在生图模型上的 scaling 能力。”


2. 关键技术实现

(1) Patchify 图像分块
  • 目的:将 2D 图像转换为 Transformer 可处理的 1D Token 序列。
  • 步骤:
    1. 输入图像尺寸为 I × I × C I \times I \times C I×I×C(如 256×256×3)。
    2. 划分为 p × p p \times p p×p 的图块(如 16×16),得到 T = ( I / p ) 2 T = (I/p)^2 T=(I/p)2 个图块。
    3. 每个图块通过线性层映射为维度 ( d ) 的视觉 Token。
    4. 添加 sin-cos 位置编码(不可学习)保留空间信息。
(2) 条件注入方式

DiT 对比了三种条件注入策略(图中提到的 in-contextcross-attentionadaLN*):

方法实现方式特点
In-context将条件(如文本)作为额外 Token 拼接简单但可能混淆模态
Cross-attention通过交叉注意力融合条件计算成本高(传统 U-Net 方案)
Adaptive Layer Norm (adaLN)用条件调制 Layer Norm 的参数高效且性能最佳(DiT 最终选择)

3. 架构优势

(1) 全局建模能力
  • Transformer 的自注意力机制直接建模图像所有 Patch 的关系,避免 CNN 的局部感受野限制。
  • 特别适合生成需要长程一致性的内容(如大型物体或复杂场景)。
(2) 可扩展性(Scaling Law)
  • 模型性能随参数规模(1.5B→8B)和数据量增长持续提升,未现饱和。
  • 实验显示:更大的 DiT 模型直接提升生成质量(FID 指标下降)。
(3) 计算效率
  • 相比 U-Net 的逐层卷积,Transformer 的并行化更适合分布式训练。
  • 潜在空间扩散(如 Latent DiT)进一步降低计算成本。

4. 与 U-Net 的对比

特性U-Net(传统扩散)DiT
架构基础CNN + 下采样-上采样Transformer + Patchify
条件注入交叉注意力adaLN(或 In-context)
全局建模有限(依赖深层卷积)强(自注意力覆盖所有 Patch)
扩展性受限于 CNN 设计符合 Scaling Law
典型应用Stable Diffusion 1.5, DALL·E 2Stable Diffusion 3, Sora

5. 影响与后续发展

  • Sora 的基石:OpenAI 的 Sora 直接基于 DiT 架构,验证了其在视频生成中的潜力。
  • 多模态扩展:MMDiT(如 SD3)在 DiT 基础上加入多模态独立权重和双向注意力。
  • 3D 生成:Patchify 思想可扩展至 3D 体素或点云数据。

总结

DiT 通过 Transformer 的统一序列处理 和 Patchify 策略,突破了传统扩散模型的架构限制,成为生成式 AI 的新标准。其设计验证了:

  1. Transformer 在生成任务中的普适性(不限于文本)。
  2. Scaling Law 对生成质量的直接影响。
  3. 条件注入方式对模型性能的关键作用(adaLN 最优)。

变分自编码器(VAE)

1. 基本概念

变分自编码器(Variational Autoencoder, VAE)是一种 生成模型,结合了自编码器(Autoencoder)和概率统计方法。它通过学习数据的潜在低维表示(latent representation)来实现数据生成和特征学习。
其核心特点是:

  • 概率编码:将输入数据映射到潜在空间(Latent Space)的概率分布(如高斯分布),而非固定值。
  • 生成能力:通过采样潜在变量生成多样化的数据。

作用

(1) 数据压缩与降维

  • 将高维数据(如图像、音频)映射到低维潜在空间(latent space),提取本质特征。
  • 相比传统PCA,VAE能学习非线性的降维关系。

(2) 概率化生成

  • 输出潜在变量的概率分布(均值μ和方差σ²),而非确定值,支持随机采样生成新数据。

  • 通过 重参数化技巧(Reparameterization Trick) 实现可微采样:

    z = μ + σ ⊙ ϵ , ϵ ∼ N ( 0 , I ) z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I) z=μ+σϵ,ϵN(0,I)

(3) 潜在空间结构化

  • 潜在空间服从标准正态分布((\mathcal{N}(0, I))),具有连续性和完备性:
    • 支持隐变量插值(如人脸属性渐变)。
    • 避免传统自编码器的“空洞区域”问题。

2. 核心思想

VAE的核心思想是通过变分推断(Variational Inference)来近似复杂的真实数据分布,主要特点包括:

  • 将输入数据映射到潜在空间的概率分布
  • 使用重参数化技巧使采样过程可微分
  • 通过最大化证据下界(ELBO)进行优化

3. 工作原理

  • 编码器(Encoder):输入数据 ( x ) → 输出潜在分布参数(均值 μ \mu μ、方差 σ 2 \sigma^2 σ2)。
  • 重参数化(Reparameterization):采样 z = μ + σ ⋅ ϵ z = \mu + \sigma \cdot \epsilon z=μ+σϵ , ( ϵ ( \epsilon (ϵ 来自标准正态分布)。
  • 解码器(Decoder):从 z z z 重建数据 x ^ \hat{x} x^

VAE的工作流程可以分为三个阶段:
码阶段:
输入数据x → 编码器 → 潜在分布的参数(μ, σ)

采样阶段:
使用重参数化技巧:z = μ + σ⊙ε,其中ε ∼ N(0,I)

解码阶段:
采样得到的z → 解码器 → 重构数据x̂

4. 架构与结构图

[VAE架构示意图]
输入数据 → 编码器网络 → (μ, σ) → 重参数化采样 → z → 解码器网络 → 重构输出
           ↓                      ↑
           KL散度约束          重构误差

主要组件:

  • 编码器(推理网络): q φ ( z ∣ x ) qφ(z|x) (zx)
  • 解码器(生成网络): p θ ( x ∣ z ) pθ(x|z) (xz)
  • 潜在空间:z ∼ N(μ,σ²)

5. 数学模型

VAE优化的是证据下界(ELBO):

$ E L B O ( θ , φ ) = 𝔼 [ l o g p θ ( x ∣ z ) ] − K L ( q φ ( z ∣ x ) ∣ ∣ p ( z ) ) ELBO(θ,φ) = 𝔼[log pθ(x|z)] - KL(qφ(z|x) || p(z)) ELBO(θ,φ)=E[log(xz)]KL((zx)∣∣p(z))

其中:

  • 第一项是重构项(reconstruction term)
  • 第二项是正则化项(KL散度)

6. 关键创新点

  • 重参数化技巧:使随机采样过程可微分
  • 概率编码器:输出分布而非确定值
  • ELBO目标函数:联合优化生成和推理

7. 优缺点分析

  • 优点:
    • 生成稳定,无需对抗训练(对比GAN)。
    • 潜在空间可解释(如控制生成图像的属性)。
  • 缺点:
    • 生成结果可能模糊(因高斯分布假设)。
    • 生成多样性不如GAN丰富。

8. 主要应用领域

  1. 数据生成

    • 从潜在空间采样生成新数据(如图像、文本)。
    • 示例:生成人脸、艺术品或补全缺失图像部分。
  2. 数据降维与特征提取

    • 将高维数据(如图像)压缩到低维潜在空间,保留关键特征。
    • 应用:可视化高维数据(类似PCA但非线性)。
  3. 异常检测

    • 通过重构误差(输入与生成的差异)识别异常样本。
    • 示例:检测工业设备故障或医疗影像异常。
  4. Stable Diffusion 等模型的基础组件

    • 在扩散模型中,VAE 负责将图像压缩到潜在空间,大幅降低计算量。

9. 重要变体

变体名称主要特点应用场景
β-VAE引入β系数控制KL散度权重解耦表示学习
VQ-VAE使用离散潜在空间语音、视频生成
CVAE加入条件信息条件生成任务
NVAE使用层级化潜在变量高分辨率图像生成

10. 与其他生成模型的对比

特性VAEGAN扩散模型
训练稳定性较高较低中等
生成质量中等很高
多样性中等
理论解释性中等
采样速度

11. 实现注意事项

  1. 网络结构设计:编码器/解码器的深度和宽度
  2. 潜在空间维度选择
  3. KL散度权重的调整
  4. 激活函数的选择(通常使用ReLU/LeakyReLU)
  5. 训练技巧(如KL退火)

12. 发展现状与趋势

VAE作为重要的生成模型框架,仍在持续发展中:

  • 与Transformer架构结合(如VQ-VAE-2)
  • 在3D生成领域的应用扩展
  • 与物理引擎结合用于科学计算
  • 作为更大模型系统的组件(如Stable Diffusion中的VAE)

VAE因其坚实的数学基础和灵活性,在生成模型领域保持着重要地位,特别是在需要明确概率解释和潜在空间操作的应用场景中。

AE 与 VAE 的对比

Autoencoder(自编码器)和 Variational Autoencoder(变分自编码器)都是无监督学习中的经典模型,用于学习数据的低维表示(潜在空间)。尽管结构相似,但它们在目标、数学基础和生成能力上有显著差异。以下是详细对比:


1. 核心思想

模型核心思想关键区别
Autoencoder (AE)通过编码器-解码器结构学习数据的压缩表示,最小化重构误差。确定性映射,无概率模型。
Variational Autoencoder (VAE)学习潜在空间的概率分布(如高斯分布),通过变分推断优化生成能力。概率化生成,支持随机采样。

2. 架构与数学原理

(1) Autoencoder (AE)

  • 结构:
    • 编码器:将输入 x x x 映射为潜在变量 z z z(确定值)。
      z = f ϕ ( x ) z = f_\phi(x) z=fϕ(x)
    • 解码器:从 z z z 重构输入 x ^ \hat{x} x^
      x ^ = g θ ( z ) \hat{x} = g_\theta(z) x^=gθ(z)
  • 损失函数:均方误差(MSE)或交叉熵。
    L A E = ∥ x − x ^ ∥ 2 \mathcal{L}_{AE} = \|x - \hat{x}\|^2 LAE=xx^2
  • 特点:
    • 潜在空间无明确约束,可能不连续(难以插值或生成新样本)。
    • 主要用于降维、去噪、特征提取。

(2) Variational Autoencoder (VAE)

  • 结构:
    • 编码器:输出潜在变量 z z z 的分布参数(均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2)。
      q ϕ ( z ∣ x ) = N ( μ ϕ ( x ) , σ ϕ 2 ( x ) ) q_\phi(z|x) = \mathcal{N}(\mu_\phi(x), \sigma_\phi^2(x)) qϕ(zx)=N(μϕ(x),σϕ2(x))
    • 解码器:从 z z z 生成数据分布 p θ ( x ∣ z ) p_\theta(x|z) pθ(xz)
  • 损失函数:证据下界(ELBO)。
    L V A E = E q ϕ ( z ∣ x ) [ log ⁡ p θ ( x ∣ z ) ] − KL ( q ϕ ( z ∣ x ) ∥ p ( z ) ) \mathcal{L}_{VAE} = \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] - \text{KL}(q_\phi(z|x) \| p(z)) LVAE=Eqϕ(zx)[logpθ(xz)]KL(qϕ(zx)p(z))
    • 重构项:鼓励解码器重建输入。
    • KL散度项:约束潜在空间接近标准正态分布 N ( 0 , I ) \mathcal{N}(0,I) N(0,I)
  • 重参数化技巧:
    z = μ + σ ⊙ ϵ , ϵ ∼ N ( 0 , I ) z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0,I) z=μ+σϵ,ϵN(0,I)
    使采样过程可微分。
  • 特点:
    • 潜在空间连续且结构化,支持插值和随机生成。
    • 是一种生成模型(如生成图像、文本)。

3. 关键区别总结

特性Autoencoder (AE)Variational Autoencoder (VAE)
潜在变量确定值 z z z概率分布 z ∼ N ( μ , σ 2 ) z \sim \mathcal{N}(\mu,\sigma^2) zN(μ,σ2)
生成能力无直接生成能力(需额外设计)可生成新样本(通过采样 z z z
潜在空间性质可能不连续连续且结构化(适合插值)
损失函数仅重构误差ELBO(重构误差 + KL散度)
应用场景数据压缩、去噪生成模型、特征解耦

4. 直观对比

AE 的潜在空间

  • 类似“压缩包”:精确还原输入,但无法保证潜在点之间的过渡有意义。
  • 示例:两个不同人脸的潜在编码之间插值,可能生成无意义的混合图像。

VAE 的潜在空间

  • 类似“地图”:服从标准正态分布,任意两点间的路径有意义。
  • 示例:从“微笑”到“严肃”人脸的插值会生成平滑过渡的表情。

5. 典型应用

Autoencoder (AE)

  • 图像去噪:训练时加入噪声,解码器学习恢复干净数据。
  • 异常检测:高重构误差的样本视为异常。
  • 数据压缩:如MNIST图像从784维(28×28)压缩到32维。

Variational Autoencoder (VAE)

  • 数据生成:生成人脸、手写数字等(如Stable Diffusion的VAE模块)。
  • 特征解耦:通过调节潜在变量控制生成属性(如β-VAE分离姿态与身份)。
  • 跨模态学习:文本到图像生成(如结合CLIP的VAE)。

6. 优缺点对比

模型优点缺点
AE- 训练简单
- 适合快速特征提取
- 生成能力弱
- 潜在空间不可解释
VAE- 支持概率化生成
- 潜在空间可插值
- 理论严谨(变分推断)
- 生成样本可能模糊
- 需平衡KL散度权重

7. 选择建议

  • 需要生成新数据 → 选择 VAE(或GAN、扩散模型)。
  • 只需压缩/去噪 → 选择 AE(更简单高效)。
  • 研究可解释性 → 选择 VAE(如β-VAE分析特征解耦)。

8. 进阶方向

  • VAE-GAN:结合VAE的潜在空间与GAN的生成质量。
  • VQ-VAE:离散潜在空间,适合语音、视频生成。
  • Hierarchical VAE:多层级潜在变量,提升生成细节。

VAE因其概率框架和生成能力,成为现代生成式AI(如Stable Diffusion)的基础组件,而传统AE更多服务于特定任务的特征学习。

MMDiT(多模态扩散Transformer)

——基于DiT(Sora同款)的多模态扩展设计


1. 背景与核心创新

MMDiT(Multimodal Diffusion Transformer)是Stable Diffusion 3的核心架构,基于DiT(Diffusion Transformer)改进而来,专为多模态数据(文本+图像)联合扩散设计。其核心创新在于:

  • 多模态兼容性:统一处理文本嵌入与图像潜在特征,解决传统扩散模型对跨模态对齐的依赖。
  • 计算效率优化:通过分模态Transformer与共享注意力机制,降低多模态融合的计算成本。

2. 与DiT(Sora架构)的对比
特性DiT(Sora)MMDiT(SD3)
输入类型单模态(图像或视频潜在表示)多模态(文本+图像)
模态交互方式跨模态注意力+分模态Transformer
位置编码图像块位置编码图像补丁+文本token联合编码
应用场景无条件视频生成文本引导的图像生成

3. MMDiT的三大核心设计
(1) 分模态Transformer
  • 独立参数:
    文本和图像模态使用独立的Transformer分支,避免模态间特征混淆。
    • 图像分支:处理VAE编码的潜在补丁(如64×64×4 → 1024×16展平序列)。
    • 文本分支:处理文本嵌入(如T5编码的77×768序列)。
  • 模态专属特征提取:
    图像分支关注局部视觉模式,文本分支聚焦语义关联。
(2) 跨模态共享注意力
  • 注意力输入:
    将图像序列与文本序列拼接为统一输入(如[1024+77, D]),送入共享的注意力层。
  • 动态交互机制:
    • 图像补丁通过注意力权重聚焦相关文本token(如“狗”的文本引导狗的视觉特征生成)。
    • 文本token通过图像特征调整语义权重(如“红色”更关注图像中的颜色区域)。
(3) 多模态位置编码
  • 图像位置编码:
    对2×2图像补丁的绝对位置编码(正弦函数或可学习参数)。
  • 文本位置编码:
    标准Transformer位置编码(如T5的相对位置编码)。
  • 联合归一化:
    对不同模态的位置编码进行尺度对齐,避免数值差异。

4. 工作流程(以SD3为例)
  1. 输入编码:
    • 图像 → VAE编码为64×64×4潜在图 → 分割为2×2补丁 → 展平为1024×16序列。
    • 文本 → T5编码为77×768序列。
  2. 模态特征投影:
    • 图像补丁投影到1024×768(与文本维度对齐)。
  3. MMDiT处理:
    • 分模态Transformer提取特征 → 跨模态注意力融合 → 预测噪声。
  4. 输出生成:
    • 去噪后的潜在特征 → VAE解码为图像。

5. 性能优势
  • 生成质量:
    文本-图像对齐精度提升30%(相比CLIP引导的SD2.1)。
  • 训练效率:
    多模态联合训练速度比两阶段模型(如DALL·E 2)快2倍。
  • 可扩展性:
    支持未来扩展至音频、视频等多模态输入(如SD3的未来版本)。

6. 代码结构示意(PyTorch风格)
class MMDiT(nn.Module):
    def __init__(self):
        # 分模态Transformer
        self.image_transformer = TransformerBlocks(dim=768)
        self.text_transformer = TransformerBlocks(dim=768)
        
        # 跨模态注意力
        self.cross_attn = MultiHeadAttention(dim=768, heads=8)
        
    def forward(self, image_emb, text_emb):
        # 分模态处理
        image_feat = self.image_transformer(image_emb)  # [1024, 768]
        text_feat = self.text_transformer(text_emb)      # [77, 768]
        
        # 跨模态交互
        combined = torch.cat([image_feat, text_feat], dim=0)  # [1101, 768]
        output = self.cross_attn(combined)
        return output

7. 总结

MMDiT通过分模态处理+联合注意力的设计,实现了:

  • 更精准的文本-图像对齐(减少语义漂移)。
  • 高效的多模态联合扩散(计算成本线性增长,而非平方级)。
  • 为未来多模态生成模型树立新范式(如视频+文本的Sora后续版本)。

这一架构不仅是SD3的核心突破,也为后续多模态扩散模型提供了可扩展的蓝图。

多模态扩散Transformer(MMDiT)架构流程图解析

在这里插入图片描述

流程图的详细解读,结合图中标注的模块和Stable Diffusion 3(SD3)的技术背景:


1. 整体架构概述

该图描述了 MMDiT(多模态扩散Transformer) 的核心处理流程,用于在扩散模型中联合处理 文本嵌入 和 图像嵌入,并通过动态调制(Modulation)实现多模态条件控制。

  • 输入:噪声级别标记(Noise Level Token)、文本嵌入(Text Embeddings)、图像嵌入(Image Embeddings)。
  • 输出:经过多轮联合注意力(Joint Attention)和MLP处理后的融合特征,用于扩散模型的噪声预测。

2. 模块功能分解
(1)输入层
  • Noise Level Token (t)
    表示当前扩散步的噪声强度(时间步嵌入),用于控制生成过程中的动态调整。 通常与时间步嵌入(timestep embedding)结合,调制模型行为。

    • 作用:在调制(Modulation)中影响特征缩放/偏移,适应不同噪声阶段的生成需求。
  • Text Embeddings
    来自 CLIP/T5 等文本编码器的语义特征,作为生成的条件输入。 通过文本编码器(如T5)生成的语义向量(如77×768序列),描述生成目标(如“一只猫”)。

  • Image Embeddings
    通过VAE编码器压缩后的图像潜在特征(如64×64×4展平为1024×16后投影到高维),是去噪过程的主体。

(2)调制(Modulation)与线性变换(Linear)
  • Modulation
    动态生成缩放因子(γ)和偏移量(β),对文本/图像特征进行条件适配:
    Output = γ ⋅ ( Linear ( x ) ) + β \text{Output} = \gamma \cdot (\text{Linear}(x)) + \beta Output=γ(Linear(x))+β

    • 输入:Noise Level Token + 文本/图像嵌入。
    • 作用:增强关键模态特征(如高噪声阶段强化文本引导)。
  • Linear
    标准的线性变换层,将输入特征投影到统一维度(如768维),便于后续注意力计算。
    目的:确保不同模态的特征在联合注意力前尺度对齐。

(3)联合注意力(Joint Attention)
  • 输入:调制后的文本(Q)、图像(K, V)特征。
  • 机制:
    • Query (Q):通常来自文本嵌入,表示需要关注的语义。
    • Key/Value (K, V):来自图像嵌入,提供视觉上下文。
    • 作用:文本token通过注意力权重聚焦相关图像区域(如“猫”对应图像中的猫轮廓)。

通过自注意力机制实现跨模态交互:

  • 图像 Token 可关注文本 Token(提升提示词跟随能力)。
  • 文本 Token 也可反向关注图像 Token(改善排版和细节)。

区别于传统交叉注意力(Cross-Attention),MMDiT 的注意力是双向且对称的。

(4)重复处理(Repeat d times)
  • 联合注意力与MLP模块堆叠 d次,逐步细化多模态特征融合:
    • MLP:多层感知机,进一步非线性变换特征。 增强表达能力。
    • 调制与线性层:每轮重新调整特征分布。

3. 关键设计亮点
  1. 动态调制(Modulation)

    • 根据噪声级别和模态特性实时调整参数,平衡文本控制与图像生成自由度。
    • 示例:早期扩散步(高噪声)强化文本引导,后期细化局部细节。
  2. 跨模态注意力(Joint Attention)

    • 文本与图像特征通过注意力机制直接交互,避免传统CLIP引导的间接对齐。
  3. 分层重复处理

    • 通过多轮(d次)迭代逐步优化特征,类似Transformer的解码器层。

4. 与SD3的关联
  • 此图是 Stable Diffusion 3 中MMDiT的核心实现,解决了传统扩散模型在多模态融合中的两大问题:
    1. 模态冲突:文本和图像分支独立处理后再融合,减少干扰。
    2. 计算效率:调制机制避免全连接融合的高计算成本。

5. 设计特点总结

独立模态权重
文本和图像分支的线性变换(linear)权重独立,避免特征混淆。

动态调制
通过 modulation 注入时间步和噪声信息,控制生成过程。

双向注意力
联合注意力机制实现文本→图像和图像→文本的双向交互,解决传统模型“文本忽略”问题。

模块化堆叠
通过重复块(Repeat d times)构建深度网络,支持复杂生成任务。

6. 总结

该流程图展示了MMDiT如何通过 调制、联合注意力和分层处理 实现:

  • 精准的文本-图像对齐(如生成符合描述的细节)。
  • 自适应的噪声阶段控制(如从全局结构到局部细化)。
  • 高效的多模态扩散(相比两阶段模型如DALL·E 2)。

这一设计是SD3生成质量显著提升的核心技术支撑。

与经典架构(如 SD1.5)的对比

组件传统 U-Net + 交叉注意力MMDiT(本图)
模态交互方式单向(文本→图像)双向(文本↔图像)
权重共享完全共享文本/图像分支独立
条件注入仅通过交叉注意力调制层 + 联合注意力
计算效率低(交叉注意力成本高)高(统一序列处理)

SD3

Stable Diffusion 3 (SD3) 是 Stable Diffusion 系列的最新版本,其模型结构和流程在继承 Latent Diffusion Model (LDM) 框架的基础上,通过引入 多模态 Diffusion Transformer (MMDiT)Rectified Flow 等关键技术实现了显著提升。以下是 SD3 的详细解析:


1. 模型结构

SD3 的核心架构分为四大模块,整体延续了 LDM 的潜在空间扩散思想,但用 Transformer 替代了传统 U-Net:

(1) VAE(变分自编码器)

用于将像素级图像编码成潜空间的 Latent 特征,再将 Latent 特征转换成 Patches 特征并加入位置编码,送入扩散模型部分。
SD3 使用了 16 通道的 VAE 模型,以增强重建能力,提高图像质量。
VAE 模型包含 GSC 组件(GroupNorm + SiLU + Conv)、Downsample 组件(Padding + Conv)、Upsample 组件(Interpolate + Conv)等基础组件,以及 ResNetBlock 模块和 Self - Attention 模块等核心组件。

  • 作用
    • 编码器:将图像从像素空间(如 512×512×3)压缩到低维潜在空间(如 64×64×4)。
    • 解码器:从潜在变量重建高清图像。
  • 改进
    • 更高保真度的压缩(减少信息损失)。
    • 支持动态分辨率(如 1024×1024 输出)。
(2) 多模态 Diffusion Transformer (MMDiT)
  • 输入处理
    • 图像 Token 化:潜在空间特征被分割为 Patch,线性投影为序列。
    • 文本 Token 化:通过 CLIP + T5 双文本编码器提取多粒度语义特征。
  • 核心设计
    • 独立权重分支:图像和文本使用分离的 Transformer 参数,避免模态混淆。
    • 双向注意力:图像 Token 与文本 Token 相互影响,提升文本渲染精度(如排版)。
    • 条件注入:时间步和文本条件通过 adaLN(自适应层归一化)融合。

作为核心扩散模型,采用 Transformer 架构,直接将文本嵌入和图像的补丁嵌入拼接在一起进行处理,使文本特征和图像特征对齐,无需引入交叉注意力机制,提升了多模态处理能力。

(3) 扩散过程(Rectified Flow)
  • 噪声调度
    • 采用直线路径的 Rectified Flow,替代传统非线性扩散(如 DDIM)。
    • 减少采样步数(从 50 步 → 10-20 步),提速 2-5 倍。
  • 动态加权:训练时对中间时间步赋予更高权重,优化去噪效果。
(4) 多文本编码器

SD3 使用了三个预训练的文本编码器,分别是 CLIP ViT - L(约 124M)、OpenCLIP ViT - bigG(约 695M)、T5 - XXL(约 4.7B),用于提取文本的特征。

  • CLIP:提供视觉-语义对齐的嵌入。
  • T5:增强长文本理解(如复杂提示词)。
  • 灵活配置:可关闭 T5 以减少计算成本(牺牲部分文本精度)。

Stable Diffusion 3(SD3)的模型结构主要由MM - DiT、VAE和文本编码器等部分组成,其流程包括文本特征提取、图像编码、特征融合与扩散模型处理以及图像解码等步骤。以下是详细介绍:

  • MM - DiT(Multimodal Diffusion Transformer):作为核心扩散模型,采用Transformer架构,直接将文本嵌入和图像的补丁嵌入拼接在一起进行处理,使文本特征和图像特征对齐,无需引入交叉注意力机制,提升了多模态处理能力。
  • VAE(变分自编码器):用于将像素级图像编码成潜空间的Latent特征,再将Latent特征转换成Patches特征并加入位置编码,送入扩散模型部分。SD3使用了16通道的VAE模型,以增强重建能力,提高图像质量。VAE模型包含GSC组件(GroupNorm + SiLU + Conv)、Downsample组件(Padding + Conv)、Upsample组件(Interpolate + Conv)等基础组件,以及ResNetBlock模块和Self - Attention模块等核心组件。
  • 文本编码器:SD3使用了三个预训练的文本编码器,分别是CLIP ViT - L(约124M)、OpenCLIP ViT - bigG(约695M)、T5 - XXL(约4.7B),用于提取文本的特征。

2. 工作流程(文生图示例)

输入文本
CLIP + T5 文本编码
生成随机噪声潜在变量 z_T
MMDiT 迭代去噪 z_T → z_0
VAE 解码 z_0 → 图像

步骤详解

  1. 文本编码

    • 输入文本提示通过预训练的文本编码器(如 CLIP 或 T5)编码成文本特征。
  2. 加噪:潜在空间初始化

    • 生成随机噪声潜在变量 z T ∼ N ( 0 , I ) z_T \sim \mathcal{N}(0, I) zTN(0,I)
  3. 迭代去噪

    • MMDiT 基于文本条件和当前噪声 z t z_t zt,预测下一步潜变量 z t − 1 z_{t-1} zt1
    • Rectified Flow 直接优化生成路径(直线轨迹)。

    ​潜在空间扩散​(Latent Diffusion)​

    • 传统方法​:使用 DDPM/DDIM 的曲线路径逐步去噪(50-100步)。
    • ​SD3 可能改进​:用 Rectified Flow 的直线路径替代,减少采样步数(5-25步)。
  4. 图像重建:解码生成图像​(VAE Decoder)
    将潜在变量解码为像素空间图像。

    • 最终潜变量 z 0 z_0 z0 通过 VAE 解码为高清图像(如 1024×1024)。将潜在变量解码为像素空间图像。

模型流程

  1. 文本特征提取
    • 全局语义特征提取:CLIP ViT - L和OpenCLIP ViT - bigG对输入文本进行编码,得到各自的Pooled Embeddings,拼接后经过MLP网络,再与Timestep Embeddings相加,得到全局语义特征“y”。
    • 细粒度特征提取:分别提取CLIP ViT - L和OpenCLIP ViT - bigG倒数第二层的特征并拼接,得到CLIP Text Embeddings。从T5 - XXL Encoder中提取最后一层的特征,经过线性变换后得到细粒度特征“c”。
  2. 图像编码:输入图像通过VAE Encoder部分,经过三个DownBlock模块、一个ResNetBlock模块以及一个MidBlock模块,将像素级图像编码成Latent特征,再转换为Patches特征并加入位置编码。
  3. 特征融合与扩散模型处理:文本的全局语义特征“y”、细粒度特征“c”与图像的Patches特征在MM - DiT架构中进行融合。在MM - DiT中,文本和图像特征在计算Q、K、V时进行拼接融合,属于中期融合。融合后的特征通过Transformer架构进行处理,利用优化改进的Flow Matching技术训练模型,生成符合文本描述的图像特征。
  4. 图像解码:经过扩散模型处理后的图像特征送入VAE Decoder部分,经过三个UpBlock模块、一个ResNetBlock模块以及一个MidBlock模块,将图像特征重建为像素级图像,作为最终的输出结果。

3. 关键技术亮点

技术SD1.5(传统 LDM)SD3提升效果
去噪网络U-Net(CNN)MMDiT(Transformer)全局建模能力↑,文本对齐↑
文本交互单向交叉注意力双向自注意力 + 独立权重排版精度↑(如文字拼写正确)
扩散路径非线性(DDIM)Rectified Flow(线性)采样速度↑(2-5 倍)
多模态支持仅图像+文本可扩展至视频/3D未来多模态生成能力↑

4. 性能优势

  • 生成质量
    • 文本渲染显著优化(如 Midjourney 的排版问题在 SD3 中改善)。
    • 复杂提示词理解更强(依赖 T5 长文本编码)。
  • 效率
    • 同等硬件下,生成速度比 SD1.5 快 2 倍(Rectified Flow 贡献)。
  • 可控性
    • 支持更细粒度的条件控制(如分区域提示)。

5. 总结

SD3 通过 MMDiT 架构Rectified Flow 实现了:

  1. 更高质量的生成(尤其是文本-图像对齐)。
  2. 更快的采样速度
  3. 更强的多模态扩展潜力(为视频/3D 生成铺路)。

其设计标志着 Stable Diffusion 系列从“CNN 时代”进入“Transformer 时代”,成为开源生成模型的标杆。未来可能进一步整合物理模拟(如 Sora 的 3D 一致性),向通用多模态生成迈进。

Stable Diffusion 3 (SD3) 的推理流程和训练流程

Stable Diffusion 3 (SD3) 是 Stability AI 最新的文本到图像生成模型,相比 SDXL 和 SD2,它在架构、训练目标和推理效率上都有显著改进。以下是 SD3 的 推理流程(生成图像)训练流程(模型优化) 的解析:


1. SD3 的推理流程(图像生成步骤)

SD3 的推理流程基于 Latent Diffusion Model (LDM),但引入了 Rectified Flow多模态 Transformer (MM-DiT) 等技术,使其更高效。以下是典型推理步骤:

(1) 文本编码(Text Encoding)

  • 输入:用户提供的文本提示(如 “a cat wearing sunglasses”)。
  • 处理
    • 使用 CLIPT5 等多模态编码器提取文本特征。
    • 生成 文本嵌入(Text Embeddings),用于指导图像生成。

(2) 潜在空间初始化(Latent Space Initialization)or 噪声初始化

  • 输入:随机高斯噪声 z T ∼ N ( 0 , I ) z_T \sim \mathcal{N}(0, I) zTN(0,I)(在潜在空间,分辨率如 64×64)。
  • 目标:通过 Rectified Flow 逐步去噪,生成有意义的潜在表示 z 0 z_0 z0

(3) 潜在空间去噪(Denoising with Rectified Flow)

  • 关键改进:SD3 可能采用 Rectified Flow 替代传统扩散(DDPM/DDIM),使路径更直、采样更快。
    • 传统扩散(SDXL):50-100 步迭代去噪。
    • SD3 + Rectified Flow:5-25 步即可生成高质量结果。
  • 数学表示
    z t = ( 1 − t ) ⋅ ϵ + t ⋅ x 0 ( t ∈ [ 0 , 1 ] ) z_{t} = (1 - t) \cdot \epsilon + t \cdot x_0 \quad (t \in [0,1]) zt=(1t)ϵ+tx0(t[0,1])
    • ϵ \epsilon ϵ:初始噪声。
    • x 0 x_0 x0:目标图像(潜在表示)。
    • 网络预测 速度场 v Θ ( z t , t ) v_\Theta(z_t, t) vΘ(zt,t),直接回归 ϵ − x 0 \epsilon - x_0 ϵx0

(4) 图像解码(VAE Decoding)

  • 输入:去噪后的潜在变量 z 0 z_0 z0
  • 输出:通过 VAE 解码器 生成最终 RGB 图像(如 1024×1024)。

(5) 可选后处理(Post-Processing)

  • 超分辨率:使用 SD3 Upscaler 提升分辨率(如 2K/4K)。
  • 细节修复:基于 DPO(Direct Preference Optimization) 微调,优化美学质量。

2. SD3 的训练流程(模型优化)

SD3 的训练流程相比 SDXL 更高效,主要改进包括 Rectified Flow 训练目标多模态 Transformer 架构

(1) 数据预处理

  • 数据集
    • 大规模图文对(如 LAION-5B、内部数据集)。
    • 合成数据增强:使用 CogVLM 生成高质量描述,混合原始数据(50% 合成 + 50% 原始)。
  • 去重(Deduplication)
    • 采用 SSCD(自监督相似性检测) 去除重复图像,防止记忆效应。

(2) 模型架构(MM-DiT)

  • 核心改进
    • 多模态 DiT(MM-DiT):文本和图像 token 使用独立权重,增强跨模态交互。
    • QK 归一化(QK-Normalization):稳定高分辨率训练(如 1024×1024)。
  • 参数规模
    • 论文训练了 80亿参数模型,验证损失随规模持续下降。

(3) 训练目标(Rectified Flow + Flow Matching)

  • 传统扩散(SDXL):使用 噪声预测(ϵ-prediction) 目标。
  • SD3 改进
    • Rectified Flow:优化直线路径,回归 ϵ − x 0 \epsilon - x_0 ϵx0
    • Flow Matching 损失
      L F M = E t , z t ∥ v Θ ( z t , t ) − ( ϵ − x 0 ) ∥ 2 \mathcal{L}_{FM} = \mathbb{E}_{t, z_t} \| v_\Theta(z_t, t) - (\epsilon - x_0) \|^2 LFM=Et,ztvΘ(zt,t)(ϵx0)2
    • 优势
      • 训练更稳定(避免 DDPM 的随机加噪)。
      • 支持少步采样(5-25 步)。

(4) 高分辨率微调

  • 分辨率适应
    • 先在 256×256 预训练,再微调到 1024×1024。
    • 采用 动态位置编码 支持任意长宽比。
  • DPO 对齐(Direct Preference Optimization)
    • 基于人类偏好数据微调,提升美学和提示跟随。

(5) 评估与优化

  • 指标
    • GenEval:评估提示跟随能力(SD3 超过 DALL·E 3)。
    • FID:衡量生成图像质量。
    • 人类偏好评分:美学、文字准确性等。
  • 优化方向
    • 减少采样步数(1-5 步实时生成)。
    • 扩展至视频、3D 生成。

3. SD3 vs. SDXL:关键区别

特性SDXLSD3
去噪方法DDIM/DDPM(曲线路径)Rectified Flow(直线)
采样步数50-100 步5-25 步
训练目标噪声预测(ϵ-prediction)流匹配(Flow Matching)
架构UNet + 交叉注意力MM-DiT(多模态 Transformer)
分辨率支持1024×1024动态分辨率(任意长宽比)
文字生成较弱更强(T5 + CLIP 融合)

4. 总结

SD3 的推理流程

  1. 文本编码 → 2. 噪声初始化 → 3. Rectified Flow 去噪(5-25步) → 4. VAE 解码 → 5. 后处理(可选)

SD3 的训练流程

  1. 数据预处理(去重+合成增强)
  2. MM-DiT 架构训练(80亿参数)
  3. Rectified Flow 目标(Flow Matching)
  4. 高分辨率微调 + DPO 对齐

核心优势

更快生成(5-25 步 vs. 50-100 步)
更强提示跟随(超越 DALL·E 3)
更高分辨率支持(动态长宽比)
更稳定训练(Flow Matching 目标)

SD3 diffusion_model: 推理 vs 训练

Stable Diffusion 3 (SD3) 中,diffusion_model 在推理过程和训练过程中的实现是一致的,但它们的使用方式和目标有所不同。具体来说,diffusion_model 的结构和功能在推理和训练过程中是相同的,但在推理过程中,它用于逐步去除噪声以生成图像,而在训练过程中,它用于学习如何预测噪声。

1. diffusion_model 的实现

diffusion_model 是一个基于 Transformer 的神经网络,用于在潜在空间中逐步去除噪声。它的核心组件包括:

  • 时间步嵌入:将时间步 ( t ) 转换为嵌入向量。
  • 文本特征嵌入:将文本特征 ( c ) 转换为嵌入向量。
  • Transformer 层:处理图像特征和文本特征的联合序列。
  • 输出层:预测当前步骤的噪声 ( \epsilon_t )。

2. 训练过程中的使用

在训练过程中,diffusion_model 的目标是学习如何预测每一步的噪声 ( \epsilon_t ),以便在推理过程中能够逐步去除噪声。具体步骤如下:

  1. 输入准备

    • 从潜在空间的表示 ( z_0 ) 开始,逐步添加噪声 ( \epsilon ) 生成 ( z_t )。
    • 准备时间步 ( t ) 和文本特征 ( c )。
  2. 正向传播

    • 将 ( z_t )、( t ) 和 ( c ) 输入到 diffusion_model 中,预测噪声 ( \epsilon_t )。
  3. 计算损失

    • 使用条件流匹配(CFM)损失函数计算预测噪声和真实噪声之间的均方误差:
      [
      \mathcal{L}{\text{CFM}} = \mathbb{E}{t, z_t, \epsilon} \left[ | v_\Theta(z_t, t, c) - \epsilon |_2^2 \right]
      ]
  4. 反向传播

    • 通过反向传播计算梯度,并使用优化器(如 AdamW)更新模型参数。

3. 推理过程中的使用

在推理过程中,diffusion_model 的目标是逐步去除噪声,生成高质量的图像。具体步骤如下:

  1. 初始化噪声

    • 从高斯噪声 ( z_T \sim \mathcal{N}(0, I) ) 开始。
  2. 逐步去噪

    • 从 ( t = T ) 开始,逐步减少时间步 ( t )。
    • 在每一步中,将当前的潜在表示 ( z_t )、时间步 ( t ) 和文本特征 ( c ) 输入到 diffusion_model 中,预测噪声 ( \epsilon_t )。
    • 根据预测的噪声更新潜在表示:
      [
      z_{t-1} = z_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_t
      ]
  3. 解码生成

    • 最终的去噪结果 ( z_0 ) 通过 VAE 的解码器解码回像素空间,生成最终的图像。

4. 代码实现

以下是一个简化的 diffusion_model 的实现示例,适用于训练和推理过程:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DiffusionModel(nn.Module):
    def __init__(self, num_layers, hidden_dim, num_heads, latent_dim, text_dim):
        super(DiffusionModel, self).__init__()
        self.num_layers = num_layers
        self.hidden_dim = hidden_dim
        self.num_heads = num_heads
        self.latent_dim = latent_dim
        self.text_dim = text_dim

        # 时间步嵌入
        self.timestep_embedding = nn.Sequential(
            nn.Linear(latent_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim)
        )

        # Transformer 层
        self.transformer_layers = nn.ModuleList([
            nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=num_heads, dim_feedforward=hidden_dim, dropout=0.1)
            for _ in range(num_layers)
        ])

        # 文本特征嵌入
        self.text_embedding = nn.Linear(text_dim, hidden_dim)

        # 输出层
        self.output_layer = nn.Linear(hidden_dim, latent_dim)

    def forward(self, z_t, t, c):
        # 时间步嵌入
        t_emb = self.timestep_embedding(t)

        # 文本特征嵌入
        c_emb = self.text_embedding(c)

        # 拼接特征
        combined_features = torch.cat([z_t, c_emb], dim=1)

        # Transformer 处理
        for layer in self.transformer_layers:
            combined_features = layer(combined_features)

        # 输出噪声预测
        noise_pred = self.output_layer(combined_features)

        return noise_pred

# 示例参数
num_layers = 6
hidden_dim = 512
num_heads = 8
latent_dim = 256
text_dim = 768

# 初始化模型
diffusion_model = DiffusionModel(num_layers, hidden_dim, num_heads, latent_dim, text_dim)

# 示例输入
z_t = torch.randn(1, latent_dim)  # 潜在空间的表示
t = torch.tensor([0.5])  # 时间步
c = torch.randn(1, text_dim)  # 文本特征

# 前向传播
noise_pred = diffusion_model(z_t, t, c)
print("预测的噪声:", noise_pred)

5. 训练和推理的差异

尽管 diffusion_model 的结构和功能在训练和推理过程中是一致的,但它们的使用方式有所不同:

  • 训练过程

    • 输入是带有噪声的潜在表示 ( z_t )。
    • 目标是预测每一步的噪声 ( \epsilon_t )。
    • 使用损失函数优化模型参数。
  • 推理过程

    • 输入是从高斯噪声初始化的潜在表示 ( z_T )。
    • 目标是逐步去除噪声,恢复出原始图像的潜在表示 ( z_0 )。
    • 最终通过 VAE 解码器生成图像。

6. 总结

diffusion_model 在训练和推理过程中的实现是一致的,但它们的目标和使用方式有所不同。在训练过程中,它用于学习如何预测噪声;在推理过程中,它用于逐步去除噪声,生成高质量的图像。这种设计使得 diffusion_model 能够在生成任务中表现出色。

潜在空间特征图(Latent Feature Map)详解

在生成模型(如Stable Diffusion)中,潜在空间特征图是输入图像经过编码器(如VAE)压缩后得到的低维、稠密表示。它保留了图像的核心语义信息,同时显著降低了计算复杂度。以下是其核心要点:


1. 什么是潜在空间特征图?
  • 定义:
    潜在空间特征图是原始图像通过神经网络(如VAE的编码器)转换后的低维张量,通常具有以下特点:
    • 空间结构:保留二维布局(如64×64),但尺寸远小于原图(如512×512)。
    • 高信息密度:每个位置的值编码了原始图像局部区域的抽象特征(如形状、纹理)。
  • 示例:
    在Stable Diffusion中,一张512×512的RGB图像被VAE编码为64×64×4的潜在特征图(空间尺寸缩小8倍,通道数为4)。

2. 为什么需要潜在空间?
  • 计算效率:
    直接在高分辨率像素空间(如512×512×3)进行扩散过程计算量极大,潜在空间(如64×64×4)可将计算量减少约(512/64)^2 = 64倍。
  • 信息浓缩:
    通过训练,VAE学会丢弃冗余信息(如噪声、高频细节),保留语义关键特征(如物体轮廓、颜色分布)。
  • 生成质量:
    低维潜在空间更易于模型学习数据分布,生成结果更稳定(对比像素空间的直接生成)。

3. 潜在空间特征图的结构

以SD的64×64×4潜在图为例:

  • 空间维度(64×64):
    对应原始图像的空间结构,但每个“像素”实际是原图某个区域(如8×8)的抽象表示。
  • 通道维度(4):
    每个空间位置有4个通道值,编码不同语义属性(如形状、颜色、深度等,具体含义由模型自动学习)。

4. 潜在空间 vs. 像素空间
特性像素空间潜在空间
数据形式原始RGB像素(如512×512×3压缩后的张量(如64×64×4
信息类型具体颜色、细节抽象语义特征
计算复杂度
生成任务适用性适合局部编辑(如超分辨率)适合全局语义生成

5. 潜在空间的操作

在生成模型中,潜在空间是核心工作区域:

  • 扩散过程:
    在潜在空间(而非像素空间)中添加/去除噪声(如SD的Latent Diffusion)。
  • 条件控制:
    文本提示通过交叉注意力机制影响潜在特征的生成方向。
  • 插值与编辑:
    潜在向量的线性插值可实现图像属性的平滑过渡(如风格混合)。

6. 实例说明

假设VAE编码器将图像转换为64×64×4潜在图:

  1. 输入:512×512的猫图像 → 分割为8×8的局部块(共64×64块)。
  2. 编码:每个8×8块被压缩为4维向量,形成64×64×4特征图。
  3. 生成:扩散模型在64×64×4空间中去噪,VAE解码器将其还原为512×512图像。

7. 总结

潜在空间特征图是高维数据到低维语义空间的桥梁,它:

  • 平衡了生成质量与计算效率;
  • 是Stable Diffusion等现代生成模型的核心设计;
  • 使模型能够专注于高级语义而非像素级细节。

​​潜在空间初始化(生成初始噪声)与前向加噪

Stable Diffusion 3(SD3) 或类似扩散模型中,潜在空间初始化加噪过程 是两个相关但不同的概念。以下是它们的区别与联系:


1. 潜在空间初始化(Latent Space Initialization)

定义

  • 作用:在生成图像时,为扩散模型提供一个 初始噪声潜变量 ( z_T \sim \mathcal{N}(0, I) )(( T ) 是最大时间步)。
  • 位置:属于 推理(生成)阶段 的第一步。
  • 特点
    • 完全随机的高斯噪声,不含任何图像信息。
    • 作为扩散模型逆向过程的起点(即从噪声生成图像的第一步)。

示例(SD3生成流程)

  1. 输入:文本提示 “A cat sitting on a chair”。
  2. 潜在空间初始化:采样一个随机噪声张量 ( z_T \in \mathbb{R}^{h \times w \times d} )(如 64×64×4)。
  3. 扩散模型:通过 Rectified Flow 逐步去噪,得到 ( z_0 )。
  4. 解码:VAE 解码器将 ( z_0 ) 转为图像。

2. 加噪过程(Forward Diffusion Process)

定义

  • 作用:在 训练阶段,通过逐步添加噪声将真实图像 ( x_0 ) 破坏为噪声 ( x_T )。
  • 数学表示
    • 对于 Rectified Flow,加噪路径是直线:
      [
      z_t = (1-t) x_0 + t \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \ t \in [0,1]
      ]
    • 传统扩散模型(如DDPM)的加噪路径是非线性的(如 ( z_t = \sqrt{\alpha_t} x_0 + \sqrt{1-\alpha_t} \epsilon ))。
  • 目的
    • 生成训练数据对 ( (z_t, t, x_0, \epsilon) ),用于训练模型预测去噪方向。

示例(训练阶段)

  1. 输入:一张真实图像 ( x_0 )(如 512×512 RGB 图)。
  2. VAE 编码:压缩为潜变量 ( x_0 \in \mathbb{R}^{64 \times 64 \times 4} )。
  3. 加噪:随机采样时间步 ( t ),计算 ( z_t = (1-t) x_0 + t \epsilon )。
  4. 训练目标:让模型 ( v_\theta ) 预测 ( x_0 - \epsilon )。

3. 关键区别

方面潜在空间初始化加噪过程
阶段推理(生成图像时)训练(准备数据时)
输入纯噪声 ( z_T \sim \mathcal{N}(0, I) )真实图像潜变量 ( x_0 ) + 噪声
输出初始噪声潜变量 ( z_T )带噪潜变量 ( z_t )(( t \in [0,1] ))
目的为逆向扩散提供起点生成训练数据,教会模型去噪

4. 常见误解澄清

误解1:潜在空间初始化 = 加噪

  • 错误:认为生成时初始化噪声是“加噪”。
  • 正确
    • 加噪 是训练阶段的行为(从图像到噪声)。
    • 初始化 是推理阶段的行为(直接采样噪声)。

误解2:两者路径相同

  • 错误:认为初始化和加噪的数学形式一致。
  • 正确
    • 加噪过程在训练时定义(如直线或非线性路径)。
    • 初始化只是采样一个纯噪声,不涉及路径计算。

5. 总结

  1. 潜在空间初始化

    • 生成阶段 的起点,纯噪声 ( z_T )。
    • 与加噪过程无关,仅作为逆向扩散输入。
  2. 加噪过程

    • 训练阶段 的数据增强方法,从 ( x_0 ) 生成 ( z_t )。
    • 定义了扩散模型的噪声调度(如 Rectified Flow 的直线路径)。
  3. Rectified Flow 的贡献

    • 通过 直线加噪路径 简化训练,使初始化后的逆向采样更高效(5~25步即可生成高质量图像)。

条件嵌入

Stable Diffusion 3 (SD3) 和其他类似的生成模型中,条件嵌入(Conditional Embedding) 是一种将额外信息(如文本描述、时间步等)编码为特征向量的技术,这些特征向量随后被用于指导生成过程。条件嵌入在生成模型中起着至关重要的作用,因为它允许模型根据这些额外信息生成符合特定条件的输出。

1. 条件嵌入的定义

条件嵌入 是将条件信息(如文本描述、时间步等)转换为模型可以处理的特征向量的过程。这些特征向量通常与主输入(如图像的潜在表示)一起输入到模型中,以便模型能够根据这些条件信息进行生成。

2. 条件嵌入的作用

条件嵌入在生成模型中有以下几个主要作用:

2.1 指导生成过程
  • 文本条件生成:在文本到图像生成任务中,文本描述被编码为条件嵌入,使得生成的图像能够符合文本描述的内容。例如,如果文本描述是“一只在草地上奔跑的狗”,模型会生成一张符合这一描述的图像。
  • 时间步条件:在扩散模型中,时间步 ( t ) 被编码为条件嵌入,使得模型能够根据当前的时间步生成相应的噪声或去噪结果。这对于控制生成过程的逐步去噪至关重要。
2.2 增强模型的表达能力
  • 多模态融合:条件嵌入允许模型处理多模态数据(如图像和文本),通过将不同模态的数据编码为特征向量并融合,模型能够更好地理解和生成复杂的多模态内容。
  • 灵活的条件控制:通过条件嵌入,模型可以灵活地接受不同类型的条件信息,从而在不同的任务中表现出色,如图像编辑、视频生成等。

3. 条件嵌入的实现

条件嵌入的实现通常包括以下几个步骤:

3.1 文本特征嵌入
  • 文本编码器:使用预训练的文本编码器(如 CLIP ViT-L、OpenCLIP ViT-bigG、T5-XXL)将文本描述编码为特征向量。
  • 特征提取:提取文本编码器的输出特征,这些特征可以是全局语义特征或细粒度特征。
3.2 时间步特征嵌入
  • 时间步嵌入层:使用一个嵌入层将时间步 ( t ) 转换为特征向量。通常使用正弦位置编码或其他嵌入方法。
  • 特征转换:将时间步特征通过一个或多个全连接层(MLP)转换为与主输入特征维度一致的特征向量。
3.3 特征融合
  • 拼接特征:将条件嵌入与主输入特征拼接在一起,形成联合特征序列。
  • Transformer 处理:使用 Transformer 层处理联合特征序列,允许主输入特征和条件嵌入之间的双向信息流动。

4. 代码示例

以下是一个简化的条件嵌入的实现示例,使用 PyTorch 框架:

import torch
import torch.nn as nn
import torch.nn.functional as F

class ConditionalEmbedding(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super(ConditionalEmbedding, self).__init__()
        self.embedding = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim)
        )

    def forward(self, x):
        return self.embedding(x)

# 示例参数
input_dim = 768  # 文本特征的维度
hidden_dim = 512  # 嵌入后的特征维度

# 初始化条件嵌入层
text_embedding = ConditionalEmbedding(input_dim, hidden_dim)
timestep_embedding = ConditionalEmbedding(1, hidden_dim)

# 示例输入
text_features = torch.randn(1, input_dim)  # 文本特征
timesteps = torch.tensor([[0.5]])  # 时间步

# 前向传播
text_emb = text_embedding(text_features)
t_emb = timestep_embedding(timesteps)

print("文本嵌入:", text_emb)
print("时间步嵌入:", t_emb)

5. 总结

条件嵌入 是将额外信息(如文本描述、时间步等)编码为特征向量的技术,这些特征向量随后被用于指导生成过程。条件嵌入在生成模型中起着至关重要的作用,它不仅能够指导生成过程,还能增强模型的表达能力和灵活性。通过条件嵌入,模型可以处理多模态数据,并在不同的任务中表现出色。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值