强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
清晰理解diffusion原理: DDPM
现在大火的stable diffusion系列,Sora,stable video diffusion等视频生成模型都是基于了diffusion模型。而diffusion模型的基石就是DDPM算法(之后有一些diffusion的加速方法,但是原理上还是DDPM),所以需要我们对DDPM有一定的了解,了解了DDPM可以帮助我们更好的理解diffusion模型。DDPM全称是Denoising Diffusion Probabilistic Models,最开始提出是用于去噪领域。原创 2024-07-09 15:02:33 · 1475 阅读 · 1 评论 -
详述stable diffusion的过程 以及扩散过程
Stable Diffusion通过将图像视为概率分布,并逐步改变该分布来生成新的图像。其核心优势在于能够生成高质量的图像,同时不需要大量标注数据,从而降低了生成成本和难度12Stable Diffusion作为一种新兴的图像生成技术,通过精确的结构设计和流程优化,实现了高效且高质量的图像生成。其在实际应用中的表现使其成为当前人工智能领域的重要工具,推动了相关技术的发展与应用25变分自编码器通过引入概率建模和重参数化技巧,有效解决了传统自编码器中的过拟合问题,并能够生成多样化的新样本。原创 2024-11-05 10:05:47 · 410 阅读 · 0 评论 -
Stable Diffusion 3 论文及源码概览
流匹配是一种定义图像生成目标的方法,它可以兼容当前扩散模型的训练目标。流匹配中一个有代表性的工作是整流 (rectified flow),它也正是 SD3 用到的训练目标。我们会在本文中通过简单的可视化示例学习流匹配的思想。由于 SD3 最后用了整流模型来建模图像生成,所以文章是从一种称为流匹配 (Flow Matching) 的角度而非更常见的扩散模型的角度来介绍各种训练目标。原创 2024-07-14 12:54:51 · 2435 阅读 · 1 评论 -
Stable Diffusion不同部件拆分详解
文本直接输入网络需要转换为特征,其实现在有很多预训练好的文本编码器效果都很好,为什么当时优先选择了CLIP呢,大概率是因为CLIP的text Encoder在训练过程当中和图像进行了对齐,因为本身来讲图像和文本是两个域的数据,由于跨域之后一般不可比的原因,所以优先选择了CLIP,预训练时候已经把text和image做对齐,引起拿到对应的输入信息之后,可以类比为图像信息,对去噪进行增加,提高生成图像的效果。UNet接收一张带有噪声的图片,输出图片中的噪声,根据带噪声的图片和噪声我们可以得到加噪前的图片。原创 2024-10-01 13:14:39 · 483 阅读 · 0 评论 -
AIGC为什么是高斯噪声,高斯噪声有什么特点
Answer高斯噪声在Stable Diffusion等模型中的应用主要源于其独特的统计性质。以下是高斯噪声的特点及其在图像生成中的重要性。原创 2024-09-29 10:31:44 · 284 阅读 · 0 评论 -
详述stable diffusion的全过程
Stable Diffusion通过将图像视为概率分布,并逐步改变该分布来生成新的图像。它的核心优势在于能够生成高质量的图像,同时不需要大量标注数据,从而降低了生成成本和难度.Stable Diffusion作为一种新兴的图像生成技术,通过精确的结构设计和流程优化,实现了高效且高质量的图像生成。其在实际应用中的表现使其成为当前人工智能领域的重要工具,推动了相关技术的发展与应用.原创 2024-09-29 10:24:23 · 107 阅读 · 0 评论 -
AIGC面试-GAN 和 diffusion 的差异,和优缺点
在选择使用GAN还是扩散模型时,需考虑具体的应用场景和需求。如果需要高质量且真实的图像生成,GAN可能是更好的选择;而如果关注生成的稳定性和多样性,扩散模型则更具优势。两者各有千秋,未来可能会有更多的结合和创新。原创 2024-08-11 16:08:41 · 321 阅读 · 0 评论