cnn.py
import torch.nn as nn
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True))
self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=3),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.layer3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True))
self.layer4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc = nn.Sequential(
nn.Linear(128*4*4, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 128),
nn.ReLU(inplace=True),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
mnist.py
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import torch.optim as optim
import cnn
# (Hyper parameters)
batch_size = 64
learning_rate = 1e-2
num_epochs = 5
if __name__ == '__main__':
data_tf = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
train_dataset = datasets.MNIST(
root='./data', train=True, transform=data_tf, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_tf)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
model = cnn.CNN()
if torch.cuda.is_available():
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
epoch = 0
for epoch in range(num_epochs):
for data in train_loader:
img, label = data
# img = img.view(img.size(0), -1)
if torch.cuda.is_available():
img = img.cuda()
label = label.cuda()
out = model(img)
loss = criterion(out, label)
print_loss = loss.data.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch+=1
model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
img, label = data
if torch.cuda.is_available():
img = img.cuda()
label = label.cuda()
out = model(img)
loss = criterion(out, label)
eval_loss+=loss.data.item()*label.size(0)
_, pred = torch.max(out, 1)
num_correct = (pred == label).sum()
eval_acc += num_correct.item()
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(
eval_loss / (len(test_dataset)),
eval_acc / (len(test_dataset))
))