Dify代码节点规范总结
基本结构
- 入口函数:必须定义一个
main
函数作为代码执行的入口点 - 参数与返回值:
- 输入参数需要在函数参数中定义,对应工作流中的输入变量
- 返回值必须是一个字典,其中包含在输出变量中声明的键
代码样式
def main(input_var1, input_var2, ...):
# 在函数内部导入模块
import module1
import module2
# 处理逻辑
result = process(input_var1, input_var2)
# 返回字典,键名对应输出变量
return {
'output_var1': result1,
'output_var2': result2
}
环境限制
- 沙箱化执行:代码在隔离环境中运行,保证安全性
- 资源限制:
- 不能直接访问文件系统
- 不能发送网络请求
- 不能执行系统级命令
- 有计算资源限制
配置要点
-
输入变量:
- 必须在节点配置中声明
- 需要引用其他节点的输出
- 变量名必须与
main
函数参数名一致
-
输出变量:
- 必须在节点配置中声明
- 必须在返回的字典中作为键名出现
- 可以被后续节点引用
-
错误重试:
- 最大重试次数:10次
- 最大重试间隔:5000 ms
主要使用场景
- 结构化数据处理:解析、提取和转换JSON数据
- 数学计算:执行复杂的数学或统计计算
- 数据拼接:合并多个数据源的输出
- 文本处理:执行自定义文本转换和处理
最佳实践
- 模块导入放在函数内部,而非全局作用域
- 使用异常处理确保代码的健壮性
- 返回前确保数据格式正确,与输出变量匹配
- 不要执行资源密集型操作
- 代码应该具有幂等性,允许重试
- 避免使用全局变量和状态
这些规范确保了代码节点能够安全、高效地集成到Dify工作流中,为开发者提供了强大的自定义能力,同时保持了平台的安全性和可靠性。