[大模型面试]Lora落地 | LoRA (Low Rank Adaption) 技术核心知识详解

LoRA(Low-Rank Adaptation)是一种用于微调大型预训练语言模型(如GPT-3、BERT等)的方法。它通过在预训练模型的特定层插入低秩矩阵来减少参数量,从而使微调更加高效。LoRA的核心思想是在不改变原有模型权重的情况下,通过添加少量新参数来进行微调。

LoRA 微调详解

  1. 背景:传统的微调方法需要对整个模型的参数进行更新,这对于大型模型来说代价高昂且容易导致过拟合。LoRA通过引入低秩矩阵来减少参数更新的数量,从而降低计算成本和存储需求。

  2. 原理:LoRA在预训练模型中的特定层(如Transformer层的注意力和前馈网络部分)添加了两个低秩矩阵 �A 和 �B。在前向传播过程中,原有的权重矩阵 W 被调整为W+BA

  3. 公式
    假设 �W 是原始权重矩阵,输入为 �X。前向传播公式为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强化学习曾小健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值