最大流-Ford-Fulkerson方法

最大流-Ford-Fulkerson方法

基本Ford-Fulkerson算法

Ford-Fulkerson方法的基本思想是,在每次迭代中,先在残存网络中寻找一个增广路径,然后将流按照增广路径增加即可,直到找不到增广路径为止。

伪代码可以写出:

FORD-FULKERSON(G,s,t)
	for each edge(u,v) in G.E
		(u,v).f = 0
	while Gf.p is not null
		cf(p) = min(cf(u,v) : (u,v) in p)
		for each edge(u,v) in p
			if (u,v) in E
				(u,v).f += cf(p)
			else
				(v,u).f -= cf(p)

算法首先初始化流为零流,下面的while循环中,每一次迭代都先寻找一条增广路径,然后计算这个路径的残存容量,之后按照残存容量调整流量即可,直到没有增广路径位为止。

基本Ford-Fulkerson算法的时间复杂度取决于如何寻找一条增广路径,通常我们使用的是深度优先搜索或者广度优先搜索,均为多项式时间。

Edmonds-Karp算法

在基本Ford-Fulkerson算法的基础上,我们选择广度优先搜索来寻找增广路径,并且这个增广路径的距离 s → t s \to t st(把边上的权值看成单位权值)是最小的,为 δ ( s , t ) \delta(s,t) δ(s,t)。这种优化方法称为Edmonds-Karp算法

引理:如果Edmonds-Karp算法运行在图G中,对于任意节点 u ∈ V − { s , t } u \in V- \{s,t\} uV{s,t},残存网络中的最短路径 δ ( s , u ) \delta(s,u) δ(s,u)随着每次流量的递增而单调递增。

定理:如果Edmonds-Karp算法运行在图G中,流量递增所执行的次数为 O ( V E ) O(VE) O(VE)

所以,Edmonds-Karp算法的时间复杂度为 O ( V E 2 ) O(VE^{2}) O(VE2)

P3376

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

ll capacity[2000][2000];
ll flow[2000][2000];
int pre[2000];

ll bfs(int n, int s, int t)
{
    ll cfp[2000];
    memset(cfp, 0, sizeof(cfp));
    queue<int> que;
    que.push(s);
    cfp[s] = LONG_LONG_MAX;
    while (!que.empty())
    {
        int curr = que.front();
        que.pop();
        for (int i = 1; i <= n; i++)
        {
            if (cfp[i] == 0)
            {
                if (capacity[curr][i] != 0 && capacity[curr][i] - flow[curr][i] > 0)
                {
                    // 可以继续流
                    cfp[i] = min(cfp[curr], capacity[curr][i] - flow[curr][i]);
                    pre[i] = curr;
                    que.push(i);
                }
                else if (capacity[i][curr] != 0 && flow[i][curr] > 0)
                {
                    // 不能继续流,但可以反向流回来
                    cfp[i] = min(cfp[curr], flow[i][curr]);
                    pre[i] = curr;
                    que.push(i);
                }
            }
        }
    }
    return cfp[t];
}

ll maxFlow(int n, int s, int t)
{
    memset(flow, 0, sizeof(flow));
    ll ans = 0;
    for (ll cfp = bfs(n, s, t); cfp != 0; cfp = bfs(n, s, t))
    {
        // 往上找父节点
        int curr = t;
        while (curr != s)
        {
            int u = pre[curr];
            int v = curr;
            if (capacity[u][v] != 0)
            {
                // 如果原图存在边,那么直接递增就行
                flow[u][v] += cfp;
            }
            else
            {
                // 如果原图不存在边,说明是从反向边递减
                flow[v][u] -= cfp;
            }
            curr = pre[curr];
        }
        ans += cfp;
    }
    return ans;
}

int main()
{
    memset(capacity, 0, sizeof(capacity));
    int N, M, s, t;
    cin >> N >> M >> s >> t;
    int virtualv = N + 1;
    // 一定要考虑重复边的容量相加,非常恶心
    while (M--)
    {
        int u, v;
        ll c;
        cin >> u >> v >> c;
        if (u == v)
        {
            // 处理自环
            capacity[u][virtualv] += c;
            capacity[virtualv][u] += c;
            virtualv++;
        }
        else if (capacity[v][u] != 0)
        {
            // 处理反向边
            capacity[u][virtualv] += c;
            capacity[virtualv][v] += c;
            virtualv++;
        }
        else
        {
            capacity[u][v] += c;
        }
    }
    cout << maxFlow(virtualv - 1, s, t) << endl;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值