电子技术——分立BJT放大电路
到目前为止,我们已经学习过三种BJT放大器配置和BJT的分立DC偏置方案,在本节,我们将其组合起来,建立完整的分立BJT放大电路。
DC偏置方案
本节我们使用的DC偏置方案是恒流源偏置,如图:
共发射极放大器
下图展示了共发射极放大器:
各个电容的作用已经在MOSFET章节讲述,本节不在赘述。该原理图的AC分析电路为(使用混合 π \pi π 模型):
与之前我们学习过简化版原理图唯一不同的是电阻
R
B
R_B
RB 的存在,则此时输入阻抗为:
R i n = R B ∣ ∣ r π R_{in} = R_B || r_\pi Rin=RB∣∣rπ
若 R B ≫ r π R_B \gg r_\pi RB≫rπ 那么我们就可以在计算上忽略其存在,否则也需要计算进来。
带发射极电阻的共发射极放大器
下图展示了带发射极电阻的共发射极放大器的原理图:
为了进行分析,我们建立等效 T 模型,如图所示:
此时因为
R
B
R_B
RB 的存在,输入阻抗变为:
R i n = R B ∣ ∣ [ ( β + 1 ) ( r e + R e ) ] R_{in} = R_B || [(\beta + 1)(r_e + R_e)] Rin=RB∣∣[(β+1)(re+Re)]
共基极放大器
下图展示了共基极放大器的原理图和等效的T模型:
其等效T模型与我们之前学习过的简化模型完全一致,这里不在赘述。
发射极跟随器
发射极跟随器的原理图如图所示:
其等效的T模型如图所示:
此时因为
R
B
R_B
RB 的存在,输入阻抗变为:
R i n = R B ∣ ∣ ( β + 1 ) ( r e + R L ) R_{in} = R_B || (\beta + 1)(r_e + R_L) Rin=RB∣∣(β+1)(re+RL)
因此,理想情况下 R B ≫ ( β + 1 ) ( r e + R L ) R_B \gg (\beta + 1)(r_e + R_L) RB≫(β+1)(re+RL) 。